This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355174 #21 Mar 22 2025 20:42:50 %S A355174 1,0,1,0,1,4,0,1,7,22,0,1,10,49,140,0,1,13,85,357,969,0,1,16,130,700, %T A355174 2695,7084,0,1,19,184,1196,5750,20930,53820,0,1,22,247,1872,10647, %U A355174 47502,166257,420732,0,1,25,319,2755,17980,93496,395560,1344904,3362260 %N A355174 The Fuss-Catalan triangle of order 3, read by rows. Related to quartic trees. %C A355174 The Fuss-Catalan triangle of order m is a regular, (0, 0)-based table recursively defined as follows: Set row(0) = [1] and row(1) = [0, 1]. Now assume row(n-1) already constructed and duplicate the last element of row(n-1). Next apply the cumulative sum m times to this list to get row(n). Here m = 3. (See the Python program for a reference implementation.) %C A355174 This definition also includes the Fuss-Catalan numbers A002293(n) = T(n, n), row 4 in A355262. For m = 1 see A355173 and for m = 2 A355172. More generally, for n >= 1 all Fuss-Catalan sequences (A355262(n, k), k >= 0) are the main diagonals of the Fuss-Catalan triangles of order n - 1. %F A355174 The general formula for the Fuss-Catalan triangles is, for m >= 0 and 0 <= k <= n: %F A355174 FCT(n, k, m) = (m*(n - k) + m + 1)*(m*n + k - 1)!/((m*n + 1)!*(k - 1)!) for k > 0 and FCT(n, 0, m) = 0^n. The case considered here is T(n, k) = FCT(n, k, 3). %F A355174 T(n, k) = (3*(n - k) + 4)*(3*n + k - 1)!/((3*n + 1)!*(k - 1)!) for k > 0; T(n, 0) = n^0. %F A355174 The g.f. of row n of the FC-triangle of order m is 0^n + (x - (m + 1)*x^2) / (1 - x)^(m*n + 2), thus: %F A355174 T(n, k) = [x^k] (0^n + (x - 4*x^2)/(1 - x)^(3*n + 2)). %e A355174 Table T(n, k) begins: %e A355174 [0] [1] %e A355174 [1] [0, 1] %e A355174 [2] [0, 1, 4] %e A355174 [3] [0, 1, 7, 22] %e A355174 [4] [0, 1, 10, 49, 140] %e A355174 [5] [0, 1, 13, 85, 357, 969] %e A355174 [6] [0, 1, 16, 130, 700, 2695, 7084] %e A355174 [7] [0, 1, 19, 184, 1196, 5750, 20930, 53820] %e A355174 [8] [0, 1, 22, 247, 1872, 10647, 47502, 166257, 420732] %e A355174 [9] [0, 1, 25, 319, 2755, 17980, 93496, 395560, 1344904, 3362260] %e A355174 Seen as an array reading the diagonals starting from the main diagonal: %e A355174 [0] 1, 1, 4, 22, 140, 969, 7084, 53820, 420732, ... A002293 %e A355174 [1] 0, 1, 7, 49, 357, 2695, 20930, 166257, 1344904, ... A233658 %e A355174 [2] 0, 1, 10, 85, 700, 5750, 47502, 395560, 3321120, ... A233667 %e A355174 [3] 0, 1, 13, 130, 1196, 10647, 93496, 816816, 7128420, ... %e A355174 [4] 0, 1, 16, 184, 1872, 17980, 167552, 1535352, 13934752, ... %o A355174 (Python) %o A355174 from functools import cache %o A355174 from itertools import accumulate %o A355174 @cache %o A355174 def Trow(n: int) -> list[int]: %o A355174 if n == 0: return [1] %o A355174 if n == 1: return [0, 1] %o A355174 row = Trow(n - 1) + [Trow(n - 1)[n - 1]] %o A355174 return list(accumulate(accumulate(accumulate(row)))) %o A355174 for n in range(11): print(Trow(n)) %Y A355174 A002293 (main diagonal), A233658 (subdiagonal), A233667 (diagonal 2), A016777 (column 2), A196678 (row sums). %Y A355174 Cf. A123110 (triangle of order 0), A355173 (triangle of order 1), A355172 (triangle of order 2), A355262 (Fuss-Catalan array). %K A355174 nonn,tabl %O A355174 0,6 %A A355174 _Peter Luschny_, Jun 25 2022