This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355212 #14 Sep 03 2024 15:03:45 %S A355212 1,2,6,3,12,4,10,5,35,7,14,8,18,9,33,11,143,13,39,15,20,16,34,17,323, %T A355212 19,57,21,24,22,46,23,115,25,30,26,36,27,42,28,58,29,899,31,62,32,74, %U A355212 37,148,38,40,82,41,1763,43,86,44,48,45,141,47,329,49,56,50 %N A355212 A variant of the EKG sequence (A064413) where the least value not yet in the sequence appears as soon as possible. %C A355212 To build the sequence: %C A355212 - we start with a(1) = 1 and a(2) = 2, and then repeatedly: %C A355212 - let a(n) be the last known term and v the least value not yet in the sequence, %C A355212 - if gcd(a(n), v) > 1 %C A355212 then a(n+1) = v, %C A355212 - otherwise: %C A355212 - let w be the least value not yet in the sequence such that gcd(a(n), w) > 1 %C A355212 and gcd(w, v) > 1, %C A355212 - then a(n+1) = w and a(n+2) = v. %C A355212 This sequence is a permutation of the positive integers with inverse A355213. %C A355212 The construction is similar to that of A352713. %H A355212 Rémy Sigrist, <a href="/A355212/b355212.txt">Table of n, a(n) for n = 1..10000</a> %H A355212 Rémy Sigrist, <a href="/A355212/a355212.gp.txt">PARI program</a> %H A355212 <a href="/index/Ed#EKG">Index entries for sequences related to EKG sequence</a> %H A355212 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A355212 The first terms are (stars correspond to "w" terms): %e A355212 n a(n) w %e A355212 -- ---- - %e A355212 1 1 %e A355212 2 2 %e A355212 3 6 * %e A355212 4 3 %e A355212 5 12 * %e A355212 6 4 %e A355212 7 10 * %e A355212 8 5 %e A355212 9 35 * %e A355212 10 7 %e A355212 11 14 * %e A355212 12 8 %e A355212 13 18 * %e A355212 14 9 %e A355212 15 33 * %e A355212 16 11 %o A355212 (PARI) \\ See Links section. %o A355212 (Python) %o A355212 from math import gcd %o A355212 from itertools import count, islice %o A355212 def agen(): # generator of terms %o A355212 aset, an, v = {1, 2}, 2, 3; yield from [1, 2] %o A355212 for n in count(3): %o A355212 if gcd(an, v) == 1: %o A355212 w = v + 1 %o A355212 while w in aset or gcd(an, w) == 1 or gcd(w, v) == 1: w += 1 %o A355212 aset.add(w); yield w %o A355212 an = v; aset.add(an); yield an %o A355212 while v in aset: v += 1 %o A355212 print(list(islice(agen(), 65))) # _Michael S. Branicky_, Jun 24 2022 %Y A355212 Cf. A064413, A352713, A355213 (inverse). %K A355212 nonn %O A355212 1,2 %A A355212 _Rémy Sigrist_, Jun 24 2022