cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355226 Irregular triangle read by rows where T(n,k) is the number of independent sets of size k in the n-halved cube graph.

This page as a plain text file.
%I A355226 #17 Feb 26 2024 15:39:22
%S A355226 1,1,1,2,1,4,1,8,4,1,16,40,1,32,256,480,120,1,64,1344,11200,36400,
%T A355226 40320,13440,1920,240,1,128,6336,156800,2104480,15644160,63672000,
%U A355226 136970880,147748560,76396800,21087360,4273920,840000,161280,28800,3840,240
%N A355226 Irregular triangle read by rows where T(n,k) is the number of independent sets of size k in the n-halved cube graph.
%C A355226 The independence number alpha(G) of a graph is the cardinality of the largest independent vertex set. The n-halved graph has alpha(G) = A005864(n). The independence polynomial for the n-halved cube is given by Sum_{k=0..alpha(G)} T(n,k)*t^k.
%C A355226 Since 0 <= k <= alpha(G), row n has length A005864(n) + 1.
%H A355226 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IndependencePolynomial.html">Independence polynomial</a>
%H A355226 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HalvedCubeGraph.html">Halved cube graph</a>
%e A355226 Triangle begins:
%e A355226     k = 0   1   2
%e A355226 n = 1:  1,  1
%e A355226 n = 2:  1,  2
%e A355226 n = 3:  1,  4
%e A355226 n = 4:  1,  8,  4
%e A355226 n = 5:  1, 16, 40
%e A355226 The 4-halved cube graph has independence polynomial 1 + 8*t + 4*t^2.
%o A355226 (Sage) from sage.graphs.independent_sets import IndependentSets
%o A355226 from collections import Counter
%o A355226 def row(n):
%o A355226     if n == 1:
%o A355226         g = graphs.CompleteGraph(1)
%o A355226     else:
%o A355226         g = graphs.HalfCube(n)
%o A355226     setCounts = Counter()
%o A355226     for Iset in IndependentSets(g):
%o A355226         setCounts[len(Iset)] += 1
%o A355226     outList = [0] * len(setCounts)
%o A355226     for n in range(0,len(setCounts)):
%o A355226         outList[n] = setCounts[n]
%o A355226     return outList
%Y A355226 Row sums are A288943.
%Y A355226 Cf. A005864, A355558.
%K A355226 nonn,tabf
%O A355226 1,4
%A A355226 _Christopher Flippen_, Jun 24 2022