This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355226 #17 Feb 26 2024 15:39:22 %S A355226 1,1,1,2,1,4,1,8,4,1,16,40,1,32,256,480,120,1,64,1344,11200,36400, %T A355226 40320,13440,1920,240,1,128,6336,156800,2104480,15644160,63672000, %U A355226 136970880,147748560,76396800,21087360,4273920,840000,161280,28800,3840,240 %N A355226 Irregular triangle read by rows where T(n,k) is the number of independent sets of size k in the n-halved cube graph. %C A355226 The independence number alpha(G) of a graph is the cardinality of the largest independent vertex set. The n-halved graph has alpha(G) = A005864(n). The independence polynomial for the n-halved cube is given by Sum_{k=0..alpha(G)} T(n,k)*t^k. %C A355226 Since 0 <= k <= alpha(G), row n has length A005864(n) + 1. %H A355226 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IndependencePolynomial.html">Independence polynomial</a> %H A355226 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HalvedCubeGraph.html">Halved cube graph</a> %e A355226 Triangle begins: %e A355226 k = 0 1 2 %e A355226 n = 1: 1, 1 %e A355226 n = 2: 1, 2 %e A355226 n = 3: 1, 4 %e A355226 n = 4: 1, 8, 4 %e A355226 n = 5: 1, 16, 40 %e A355226 The 4-halved cube graph has independence polynomial 1 + 8*t + 4*t^2. %o A355226 (Sage) from sage.graphs.independent_sets import IndependentSets %o A355226 from collections import Counter %o A355226 def row(n): %o A355226 if n == 1: %o A355226 g = graphs.CompleteGraph(1) %o A355226 else: %o A355226 g = graphs.HalfCube(n) %o A355226 setCounts = Counter() %o A355226 for Iset in IndependentSets(g): %o A355226 setCounts[len(Iset)] += 1 %o A355226 outList = [0] * len(setCounts) %o A355226 for n in range(0,len(setCounts)): %o A355226 outList[n] = setCounts[n] %o A355226 return outList %Y A355226 Row sums are A288943. %Y A355226 Cf. A005864, A355558. %K A355226 nonn,tabf %O A355226 1,4 %A A355226 _Christopher Flippen_, Jun 24 2022