cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355227 Irregular triangle read by rows where T(n,k) is the number of independent sets of size k in the n-folded cube graph.

This page as a plain text file.
%I A355227 #25 Feb 26 2024 15:37:43
%S A355227 1,2,1,4,1,8,12,8,2,1,16,80,160,120,16,1,32,400,2560,9280,20256,28960,
%T A355227 31520,29880,24320,16336,8768,3640,1120,240,32,2,1,64,1792,29120,
%U A355227 307440,2239552,11682944,44769920,128380880,279211520,464621248,593908224,582529360,435648640,245610720,102886976,31658620,7189056,1239840,165760,17584,1408,64
%N A355227 Irregular triangle read by rows where T(n,k) is the number of independent sets of size k in the n-folded cube graph.
%C A355227 The independence number alpha(G) of a graph is the cardinality of the largest independent vertex set. The n-folded cube has alpha(G) = A058622(n-1). The independence polynomial for the n-folded cube is given by Sum_{k=0..alpha(G)} T(n,k)*t^k.
%C A355227 Since 0 <= k <= alpha(G), row n has length A058622(n-1) + 1.
%H A355227 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IndependencePolynomial.html">Independence polynomial</a>
%H A355227 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FoldedCubeGraph.html">Folded cube graph</a>
%e A355227 Triangle begins:
%e A355227     k = 1   2   3    4    5   6
%e A355227 n = 2:  1,  2
%e A355227 n = 3:  1,  4
%e A355227 n = 4:  1,  8, 12,   8,   2
%e A355227 n = 5:  1, 16, 80, 160, 120, 16
%e A355227 The 5-folded cube graph has independence polynomial 1 + 16*t + 80*t^2 + 160*t^3 + 120*t^4 + 16*t^5.
%o A355227 (Sage) from sage.graphs.independent_sets import IndependentSets
%o A355227 def row(n):
%o A355227     g = graphs.FoldedCubeGraph(n)
%o A355227     if n % 2 == 0:
%o A355227         setCounts = [0] * (pow(2, n-2) + 1)
%o A355227     else:
%o A355227         size = int(pow(2, n-2) - 1/4 * (1-pow(-1,n)) * math.comb(n-1, 1/2 * (n-1)) + 1)
%o A355227         setCounts = [0] * size
%o A355227     for Iset in IndependentSets(g):
%o A355227         setCounts[len(Iset)] += 1
%o A355227     return setCounts
%Y A355227 Row sums are A290888.
%Y A355227 Cf. A058622, A355559.
%K A355227 nonn,tabf
%O A355227 2,2
%A A355227 _Christopher Flippen_, Jun 24 2022