This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355227 #25 Feb 26 2024 15:37:43 %S A355227 1,2,1,4,1,8,12,8,2,1,16,80,160,120,16,1,32,400,2560,9280,20256,28960, %T A355227 31520,29880,24320,16336,8768,3640,1120,240,32,2,1,64,1792,29120, %U A355227 307440,2239552,11682944,44769920,128380880,279211520,464621248,593908224,582529360,435648640,245610720,102886976,31658620,7189056,1239840,165760,17584,1408,64 %N A355227 Irregular triangle read by rows where T(n,k) is the number of independent sets of size k in the n-folded cube graph. %C A355227 The independence number alpha(G) of a graph is the cardinality of the largest independent vertex set. The n-folded cube has alpha(G) = A058622(n-1). The independence polynomial for the n-folded cube is given by Sum_{k=0..alpha(G)} T(n,k)*t^k. %C A355227 Since 0 <= k <= alpha(G), row n has length A058622(n-1) + 1. %H A355227 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IndependencePolynomial.html">Independence polynomial</a> %H A355227 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FoldedCubeGraph.html">Folded cube graph</a> %e A355227 Triangle begins: %e A355227 k = 1 2 3 4 5 6 %e A355227 n = 2: 1, 2 %e A355227 n = 3: 1, 4 %e A355227 n = 4: 1, 8, 12, 8, 2 %e A355227 n = 5: 1, 16, 80, 160, 120, 16 %e A355227 The 5-folded cube graph has independence polynomial 1 + 16*t + 80*t^2 + 160*t^3 + 120*t^4 + 16*t^5. %o A355227 (Sage) from sage.graphs.independent_sets import IndependentSets %o A355227 def row(n): %o A355227 g = graphs.FoldedCubeGraph(n) %o A355227 if n % 2 == 0: %o A355227 setCounts = [0] * (pow(2, n-2) + 1) %o A355227 else: %o A355227 size = int(pow(2, n-2) - 1/4 * (1-pow(-1,n)) * math.comb(n-1, 1/2 * (n-1)) + 1) %o A355227 setCounts = [0] * size %o A355227 for Iset in IndependentSets(g): %o A355227 setCounts[len(Iset)] += 1 %o A355227 return setCounts %Y A355227 Row sums are A290888. %Y A355227 Cf. A058622, A355559. %K A355227 nonn,tabf %O A355227 2,2 %A A355227 _Christopher Flippen_, Jun 24 2022