This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355228 #37 Jun 27 2022 10:03:21 %S A355228 1,0,6,18,28,24,48,60,84,120,120,120,180,180,240,360,360,360,360,672, %T A355228 720,720,720,840,840,1080,1260,1260,1260,1680,1680,1680,2160,2520, %U A355228 2520,2520,2520,2520,2520,3360,4320,5040,5040,5040,5040,5040,5040,5040,5040 %N A355228 a(n) is the smallest integer m such that there exist n of its distinct divisors (d_1, d_2, ..., d_n) with the property that m = d_1 + d_2 + ... + d_n = lcm(d_1, d_2, ..., d_n), or 0 if no such number m exists. %C A355228 This sequence is the generalization of the problem A1737 proposed on French mathematical site Diophante (see link). %C A355228 a(2) = 0 but all other terms are nonzero. %C A355228 a(n) >= A081512(n) because in A081512, it is not required that m = lcm(d_1, d_2, ..., d_n). Currently, the strict inequality happens for n = 4 and n = 5; are there other such cases? %H A355228 Diophante, <a href="http://www.diophante.fr/problemes-par-themes/arithmetique-et-algebre/a1-pot-pourri/4960-a1737-fideles-au-rendez-vous">A1737 - Fidèles au rendez-vous</a> (in French). %e A355228 In the following triangle, the n-th row gives an example of a set of n divisors d_1, ..., d_n of a(n) such that a(n) = d_1 + ... + d_n = lcm(d_1, ..., d_n): %e A355228 . %e A355228 n m d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8 d_9 d10 d11 d12 %e A355228 ----------------------------------------------------------- %e A355228 1 1 1 %e A355228 2 0 %e A355228 3 6 1 2 3 %e A355228 4 18 1 2 6 9 %e A355228 5 28 1 2 4 7 14 %e A355228 6 24 1 2 3 4 6 8 %e A355228 7 48 1 2 3 4 8 16 24 %e A355228 8 60 1 2 3 4 5 10 15 20 %e A355228 9 84 1 2 3 4 6 7 12 21 28 %e A355228 10 120 1 2 3 4 5 6 15 20 24 40 %e A355228 11 120 1 2 3 4 5 6 8 12 15 24 40 %e A355228 12 120 1 2 3 4 5 6 8 10 12 15 24 30 %e A355228 However, for a given value of a(n) = m, there may be more than one way to choose d_1, ..., d_n. For example, for n=10, a(10)=120 and all seventeen solutions provided by _Jinyuan Wang_ in the Comments section of A081512 are also solutions here. %o A355228 (PARI) isok(m, n) = {my(d=divisors(m)); if (#d<n, return(0)); forsubset([#d, n], s, my(vd = vector(n, k, d[s[k]])); if (lcm(vd) == vecsum(vd), return(1)););} %o A355228 a(n) = {if (n==1, return(1)); if (n==2, return(0)); my(m=1); while (!isok(m, n), m++); m;} \\ _Michel Marcus_, Jun 25 2022 %Y A355228 Cf. A000396, A081512. %K A355228 nonn %O A355228 1,3 %A A355228 _Bernard Schott_, Jun 25 2022 %E A355228 More terms from _Jinyuan Wang_, Jun 25 2022