cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355229 E.g.f. A(x) satisfies A'(x) = 1 - log(1-x) * A(x).

This page as a plain text file.
%I A355229 #21 Jun 25 2022 10:00:34
%S A355229 0,1,0,2,3,16,65,365,2261,16240,131097,1182013,11779537,128737088,
%T A355229 1532051287,19731964705,273556185109,4062828620256,64368863326717,
%U A355229 1083795820014261,19327395713028985,363940825109825200,7216468161637890899,150304143164083288441
%N A355229 E.g.f. A(x) satisfies A'(x) = 1 - log(1-x) * A(x).
%F A355229 a(0) = 0, a(1) = 1; a(n+1) = Sum_{k=1..n-1} (k-1)! * binomial(n,k) * a(n-k).
%F A355229 E.g.f.: (1-x)^(1-x) / exp(1-x) * Integral(exp(1-x) / (1-x)^(1-x) dx). - _Vaclav Kotesovec_, Jun 25 2022
%t A355229 nmax = 25; CoefficientList[Series[(1-x)^(1-x) / E^(1-x) * Integrate[E^(1-x) / (1-x)^(1-x), x], {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Jun 25 2022 *)
%o A355229 (PARI) a_vector(n) = my(v=vector(n)); v[1]=1; for(i=1, n-1, v[i+1]=sum(j=1, i-1, (j-1)!*binomial(i, j)*v[i-j])); concat(0, v);
%Y A355229 Cf. A055596, A087650, A355230, A355231.
%K A355229 nonn
%O A355229 0,4
%A A355229 _Seiichi Manyama_, Jun 25 2022