cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355231 E.g.f. A(x) satisfies A'(x) = 1 - 2 * log(1-x) * A(x).

This page as a plain text file.
%I A355231 #19 Jun 25 2022 10:00:29
%S A355231 0,1,0,4,6,48,200,1364,9016,71088,607920,5772528,59790720,673839456,
%T A355231 8210152704,107668087104,1513106471040,22700196933120,362277092798208,
%U A355231 6130771723664640,109694104262443008,2069581743476587008,41071931895114372096,855436794313229319168
%N A355231 E.g.f. A(x) satisfies A'(x) = 1 - 2 * log(1-x) * A(x).
%F A355231 a(0) = 0, a(1) = 1; a(n+1) = 2 * Sum_{k=1..n-1} (k-1)! * binomial(n,k) * a(n-k).
%F A355231 E.g.f.: (1-x)^(2 - 2*x) / exp(2 - 2*x) * Integral(exp(2 - 2*x) / (1-x)^(2 - 2*x) dx). - _Vaclav Kotesovec_, Jun 25 2022
%t A355231 nmax = 25; CoefficientList[Series[(1-x)^(2 - 2*x)/E^(2 - 2*x) * Integrate[E^(2 - 2*x) / (1-x)^(2 - 2*x), x], {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Jun 25 2022 *)
%o A355231 (PARI) a_vector(n) = my(v=vector(n)); v[1]=1; for(i=1, n-1, v[i+1]=2*sum(j=1, i-1, (j-1)!*binomial(i, j)*v[i-j])); concat(0, v);
%Y A355231 Cf. A088500, A355205, A355229, A355230.
%K A355231 nonn
%O A355231 0,4
%A A355231 _Seiichi Manyama_, Jun 25 2022