This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355242 #11 Jul 05 2022 17:53:40 %S A355242 1,1,1,1,1,2,1,1,2,1,1,1,2,1,3,1,1,2,1,3,1,1,1,1,1,1,1,1,1,1,2,1,3,1, %T A355242 1,2,1,1,1,1,3,1,1,1,1,1,1,2,1,3,3,1,2,1,2,1,1,2,1,3,1,1,2,1,1,1,1,1, %U A355242 2,1,3,1,1,1,1,1,1,1,1,1,2,1,3,1,1,2,1,1,1,1,1 %N A355242 T(w,h) is the minimum integer slope >= 1 that can be chosen as orientation of a w X h rectangle such that the upper bound for the minimum number of covered grid points A354702(w,d) can be achieved by a suitable translation of the rectangle, where T(w,h) and A354702 are triangles read by rows. T(w,h) = -1 if no integer slope satisfying this condition exists. %C A355242 T(17,13) = -1 is the first occurrence of the situation that it is not possible to reach the upper limit A354702(17,13) = 215 with a rectangle whose long side has an integer slope. (17 X 13)-rectangles with integer slope cannot cover less than 216 grid points. To achieve 215 grid points requires a slope of 3/2, i.e. A355241(17,13) = 3. See the linked file for related illustrations. %H A355242 Hugo Pfoertner, <a href="/A355242/b355242.txt">Table of n, a(n) for n = 1..210</a>, rows 1..20 of triangle, flattened %H A355242 Hugo Pfoertner, <a href="/A355242/a355242.pdf">(17 X 13)-rectangles with minimum number of covered grid points</a> %e A355242 The triangle begins: %e A355242 \ h 1 2 3 4 5 6 7 8 9 10 11 12 13 %e A355242 w \ -------------------------------------- %e A355242 1 | 1; | | | | | | | | | | | | %e A355242 2 | 1, 1; | | | | | | | | | | | %e A355242 3 | 1, 1, 2; | | | | | | | | | | %e A355242 4 | 1, 1, 2, 1; | | | | | | | | | %e A355242 5 | 1, 1, 2, 1, 3; | | | | | | | | %e A355242 6 | 1, 1, 2, 1, 3, 1; | | | | | | | %e A355242 7 | 1, 1, 1, 1, 1, 1, 1; | | | | | | %e A355242 8 | 1, 1, 2, 1, 3, 1, 1, 2; | | | | | %e A355242 9 | 1, 1, 1, 1, 3, 1, 1, 1, 1; | | | | %e A355242 10 | 1, 1, 2, 1, 3, 3, 1, 2, 1, 2; | | | %e A355242 11 | 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 1; | | %e A355242 12 | 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1; | %e A355242 13 | 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1 %Y A355242 Cf. A354702. %Y A355242 A355241 is similar, but with slopes chosen from the list 1/2, 1, 3/2, 2, ... . %K A355242 tabl,sign %O A355242 1,6 %A A355242 _Hugo Pfoertner_, Jun 25 2022