This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355257 #37 Apr 13 2025 01:46:03 %S A355257 0,0,1,0,1,3,0,1,5,14,0,1,7,29,90,0,1,9,50,206,744,0,1,11,77,406,1774, %T A355257 7560,0,1,13,110,714,3804,18204,91440,0,1,15,149,1154,7374,41028, %U A355257 218868,1285200,0,1,17,194,1750,13144,85272,506064,3036144,20603520 %N A355257 Array read by ascending antidiagonals. A(n, k) = k! * [x^k] log((1 - x) / (1 - 2*x)) / (1 - x)^n, for 0 <= k <= n. %C A355257 Conjecture: For p prime, A(n, p) == -1 (mod p) for n >= 0. %C A355257 Conjecture: Let n >= 0, k >= 1 and k != 4. Then k divides A(n, k) if and only if k is not prime. %C A355257 From _Mélika Tebni_, Jul 04 2022: (Start) %C A355257 Conjecture: The polynomials of A355259 generate the k+1 column of this array. %C A355257 Conjecture: For p prime and n even, (A(n, p) / (p - 1)) == 1 (mod p). (End) %F A355257 A(n, k) = k!*Sum_{j=0..k-1} binomial(k + n - 1, k - j - 1) / (j + 1). %F A355257 A(n, k) = k!*Sum_{j=1..k} binomial(n + k - j - 1, n - 1)*(2^j - 1) / j. %F A355257 A(n, k) = k!*binomial(n + k - 1, k - 1)*hypergeom([1, 1, 1 - k], [2, n + 1], -1) except for A(0, 0) = 0. %e A355257 Table A(n, k) begins: %e A355257 [0] 0, 1, 3, 14, 90, 744, 7560, 91440, 1285200, ... A029767 %e A355257 [1] 0, 1, 5, 29, 206, 1774, 18204, 218868, 3036144, ... A103213 %e A355257 [2] 0, 1, 7, 50, 406, 3804, 41028, 506064, 7084656, ... A355171 %e A355257 [3] 0, 1, 9, 77, 714, 7374, 85272, 1102968, 15908400, ... A355372 %e A355257 [4] 0, 1, 11, 110, 1154, 13144, 164136, 2251920, 33923760, ... A355407 %e A355257 [5] 0, 1, 13, 149, 1750, 21894, 295500, 4320420, 68487120, ... A355414 %e A355257 [6] 0, 1, 15, 194, 2526, 34524, 502644, 7838928, 131198544, ... %e A355257 [7] 0, 1, 17, 245, 3506, 52054, 814968, 13543704, 239548176, ... %p A355257 egf := n -> log((1 - x)/(1 - 2*x))/(1 - x)^n: %p A355257 ser := n -> series(egf(n), x, 22): %p A355257 row := n -> seq(k!*coeff(ser(n), x, k), k = 0..8): %p A355257 seq(print(row(n)), n = 0..8); %p A355257 # Alternative: %p A355257 A := (n, k) -> add(k!*binomial(k + n - 1, k - j - 1)/(j + 1), j = 0..k-1): %p A355257 seq(print(seq(A(n, k), k = 0..8)), n = 0..7); %t A355257 A[0, 0] = 0; A[n_, k_] := k! * Binomial[n+k-1, k - 1] * HypergeometricPFQ[{1 - k, 1, 1}, {2, n + 1}, -1]; %t A355257 Table[A[n, k], {n, 0, 8}, {k, 0, 8}] // TableForm %Y A355257 Cf. A029767, A103213, A355171, A355259, A355372, A355407, A355414. %K A355257 nonn,tabl %O A355257 0,6 %A A355257 _Peter Luschny_ and _Mélika Tebni_, Jul 01 2022