This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355258 #10 Apr 12 2024 14:01:48 %S A355258 0,1,1,5,34,294,3096,38520,553680,9036720,165191040,3344664960, %T A355258 74321452800,1798531257600,47088252288000,1326311841254400, %U A355258 39993302622873600,1285497518393088000,43878291581988864000,1585102883250991104000,60420385100090695680000,2423528644964637450240000 %N A355258 a(n) = n! * [x^n] (1 - x)*log((1 - x)/(1 - 2*x)). %F A355258 For n>=2, a(n) = (1 + 2^(n-1) * (n-2)) * (n-2)!. - _Vaclav Kotesovec_, Jul 01 2022 %F A355258 For n>=2, a(n) = n!*Sum_{k, 0, n - 2} (binomial(n - 2, k)/(k + 2)). - _Detlef Meya_, Apr 12 2024 %p A355258 egf := (1 - x)*log((1 - x)/(1 - 2*x)): ser := series(egf, x, 23): %p A355258 seq(n!*coeff(ser, x, n), n = 0..21); %p A355258 # Alternative: %p A355258 a := n -> local k; n! * ifelse(n < 2, n, (2^(n - 1)*(n - 2) + 1) / (n*(n - 1))): %p A355258 seq(a(n), n = 0..21); # _Peter Luschny_, Apr 12 2024 %t A355258 a[0]:=0; a[1]:=1; a[n_]:=n!*Sum[Binomial[n-2,k]/(k+2), {k,0,n-2}]; %t A355258 Flatten[Table[a[n],{n,0,21}]] (* _Detlef Meya_, Apr 12 2024 *) %Y A355258 Cf. A355257. %K A355258 nonn %O A355258 0,4 %A A355258 _Peter Luschny_, Jul 01 2022