This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355259 #5 Jul 04 2022 06:51:09 %S A355259 1,3,2,14,12,3,90,82,30,4,744,680,285,60,5,7560,6788,2985,760,105,6, %T A355259 91440,80136,35532,9870,1715,168,7,1285200,1098984,482300,138796, %U A355259 27160,3444,252,8,20603520,17227584,7425492,2152584,447405,65520,6342,360,9 %N A355259 Triangle read by rows. Row k are the coefficients of the polynomials (sorted by ascending powers) which interpolate the points (n, A355257(n, k+1)) for n = 0..k. %C A355259 Conjecture from _Mélika Tebni_: These polynomials generate column k + 1 of %C A355259 A355257. %e A355259 [0] 1; %e A355259 [1] 3, 2; %e A355259 [2] 14, 12, 3; %e A355259 [3] 90, 82, 30, 4; %e A355259 [4] 744, 680, 285, 60, 5; %e A355259 [5] 7560, 6788, 2985, 760, 105, 6; %e A355259 [6] 91440, 80136, 35532, 9870, 1715, 168, 7; %e A355259 [7] 1285200, 1098984, 482300, 138796, 27160, 3444, 252, 8; %e A355259 [8] 20603520, 17227584, 7425492, 2152584, 447405, 65520, 6342, 360, 9; %e A355259 . %e A355259 Seen as polynomials: %e A355259 p0(x) = 1; %e A355259 p1(x) = 3 + 2*x; %e A355259 p2(x) = 14 + 12*x + 3*x^2; %e A355259 p3(x) = 90 + 82*x + 30*x^2 + 4*x^3; %e A355259 p4(x) = 744 + 680*x + 285*x^2 + 60*x^3 + 5*x^4; %e A355259 p5(x) = 7560 + 6788*x + 2985*x^2 + 760*x^3 + 105*x^4 + 6*x^5; %e A355259 p6(x) = 91440 + 80136*x + 35532*x^2 + 9870*x^3 + 1715*x^4 + 168*x^5 + 7*x^6; %p A355259 A355257 := (n, k) -> add(k!*binomial(k + n - 1, k - j - 1)/(j + 1), j = 0..k-1): %p A355259 for k from 0 to 9 do CurveFitting:-PolynomialInterpolation([seq([n, A355257(n, k+1)], n = 0..k)], x): %p A355259 print(seq(coeff(%, x, j), j = 0..k)) od: %Y A355259 Cf. A355257. %K A355259 nonn,tabl %O A355259 0,2 %A A355259 _Peter Luschny_, Jul 03 2022