cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355261 a(n) = largest-nth-power(n, 2) * radical(n) = A000188(n) * A007947(n), where largest-nth-power(n, e) is the largest positive integer b such that b^e divides n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 12, 13, 14, 15, 8, 17, 18, 19, 20, 21, 22, 23, 12, 25, 26, 9, 28, 29, 30, 31, 8, 33, 34, 35, 36, 37, 38, 39, 20, 41, 42, 43, 44, 45, 46, 47, 24, 49, 50, 51, 52, 53, 18, 55, 28, 57, 58, 59, 60, 61, 62, 63, 16, 65, 66, 67, 68
Offset: 1

Views

Author

Peter Luschny, Jul 12 2022

Keywords

Crossrefs

Programs

  • Maple
    with(NumberTheory): seq(LargestNthPower(n, 2)*Radical(n), n = 1..68);
  • Mathematica
    Array[Apply[Times, #[[All, 1]]]*Apply[Times, #1^Floor[#2/2] & @@ Transpose@ #] &@ FactorInteger[#] &, 68] (* Michael De Vlieger, Jul 12 2022 *)
  • Python
    from math import prod
    from sympy import factorint
    def A355261(n): return prod(p**((e>>1)+1) for p, e in factorint(n).items()) # Chai Wah Wu, Jul 13 2022

Formula

Multiplicative with a(p^e) = p^(1+floor(e/2)). - Amiram Eldar, Jul 13 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(3)/2) * Product_{p prime} (1 - 2/p^3 + 1/p^4) = 0.447583182004... . - Amiram Eldar, Nov 13 2022