This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355262 #26 Sep 29 2024 09:19:47 %S A355262 1,1,1,1,1,0,1,1,1,0,1,1,2,1,0,1,1,3,5,1,0,1,1,4,12,14,1,0,1,1,5,22, %T A355262 55,42,1,0,1,1,6,35,140,273,132,1,0,1,1,7,51,285,969,1428,429,1,0,1,1, %U A355262 8,70,506,2530,7084,7752,1430,1,0 %N A355262 Array of Fuss-Catalan numbers read by ascending antidiagonals, A(n, k) = binomial(k*n + 1, k)/(k*n + 1). %C A355262 An alternative definition is: the Fuss-Catalan sequences (A(n, k), k >= 0 ) are the main diagonals of the Fuss-Catalan triangles of order n - 1. See A355173 for the definition of a Fuss-Catalan triangle. %D A355262 N. I. Fuss, Solutio quaestionis, quot modis polygonum n laterum in polygona m laterum, per diagonales resolvi queat, Nova Acta Academiae Scientiarum Imperialis Petropolitanae, vol.9 (1791), 243-251. %D A355262 R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 1990, (Eqs. 5.70, 7.66, and sec. 7.5, example 5). %H A355262 Per Alexandersson, Frether Getachew Kebede, Samuel Asefa Fufa, and Dun Qiu, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Getachew/get3.html">Pattern-Avoidance and Fuss-Catalan Numbers</a>, J. Int. Seq. (2023) Vol. 26, Art. 23.4.2. %H A355262 Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, pp. 337-338. %H A355262 Jean-Luc Baril, Mireille Bousquet-Mélou, Sergey Kirgizov, and Mehdi Naima, <a href="https://arxiv.org/abs/2409.15982">The ascent lattice on Dyck paths</a>, arXiv:2409.15982 [math.CO], 2024. See p. 6. %H A355262 Jean-Christophe Aval, <a href="https://arxiv.org/abs/0711.0906">Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669. %H A355262 Thomas A. Dowling, <a href="https://docplayer.net/6827054-Catalan-numbers-thomas-a-dowling-department-of-mathematics-ohio-state-uni-versity.html">Catalan Numbers</a>, Chapter 7. %H A355262 D. E. Knuth, <a href="https://arxiv.org/abs/math/9207221">Convolution polynomials</a>, arXiv:math/9207221 [math.CA]; Mathematica J. 2.1 (1992), no. 4, 67-78. %H A355262 Donald Knuth's 20th Annual Christmas Tree Lecture, <a href="https://www.youtube.com/watch?v=P4AaGQIo0HY">(3/2)-ary Trees</a>, Stanford Online, Video 2014. %H A355262 Wojciech Młotkowski, <a href="https://www.math.uni-bielefeld.de/documenta/vol-15/28.pdf">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Math. 15:939-955, (2010). %H A355262 Wikipedia, <a href="https://en.wikipedia.org/wiki/Fuss%E2%80%93Catalan_number">Fuss-Catalan number</a>. %F A355262 A(n, k) = (1/k!) * Product_{j=1..k-1} (k*n + 1 - j). %F A355262 A(n, k) = (binomial(k*n, k) + binomial(k*n, k-1)) / (k*n + 1). %F A355262 Let B(t, z) = Sum_{k>=0} binomial(k*t + 1, k)*z^k / (k*t + 1), then %F A355262 A(n, k) = [z^k] B(n, z). %e A355262 Array A(n, k) begins: %e A355262 [0] 1, 1, 0, 0, 0, 0, 0, 0, 0, ... A019590 %e A355262 [1] 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012 %e A355262 [2] 1, 1, 2, 5, 14, 42, 132, 429, 1430, ... A000108 %e A355262 [3] 1, 1, 3, 12, 55, 273, 1428, 7752, 43263, ... A001764 %e A355262 [4] 1, 1, 4, 22, 140, 969, 7084, 53820, 420732, ... A002293 %e A355262 [5] 1, 1, 5, 35, 285, 2530, 23751, 231880, 2330445, ... A002294 %e A355262 [6] 1, 1, 6, 51, 506, 5481, 62832, 749398, 9203634, ... A002295 %e A355262 [7] 1, 1, 7, 70, 819, 10472, 141778, 1997688, 28989675, ... A002296 %e A355262 [8] 1, 1, 8, 92, 1240, 18278, 285384, 4638348, 77652024, ... A007556 %e A355262 [9] 1, 1, 9, 117, 1785, 29799, 527085, 9706503, 184138713, ... A062994 %p A355262 A := (n, k) -> binomial(k*n + 1, k)/(k*n + 1): %p A355262 for n from 0 to 9 do seq(A(n, k), k = 0..8) od; %t A355262 (* See the Knuth references. In the christmas lecture Knuth has fun calculating the Fuss-Catalan development of Pi and i. *) %t A355262 B[t_, n_] := Sum[Binomial[t k+1, k] z^k / (t k+1), {k, 0, n-1}] + O[z]^n %t A355262 Table[CoefficientList[B[n, 9], z], {n, 0, 9}] // TableForm %Y A355262 Cf. A091144 (main diagonal), A019590, A000012, A000108, A001764, A002293, A002294, A002295, A002296, A007556, A062994. %Y A355262 Variants: A062993, A070914. %Y A355262 Fuss-Catalan triangles: A123110 (order 0), A355173 (order 1), A355172 (order 2), A355174 (order 3). %K A355262 nonn,tabl %O A355262 0,13 %A A355262 _Peter Luschny_, Jun 26 2022