A355265 Bicubeful numbers.
64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 729, 768, 832, 896, 960, 1024, 1088, 1152, 1216, 1280, 1344, 1408, 1458, 1472, 1536, 1600, 1664, 1728, 1792, 1856, 1920, 1984, 2048, 2112, 2176, 2187, 2240, 2304, 2368, 2432, 2496, 2560, 2624, 2688, 2752
Offset: 1
Keywords
Examples
n = 512 = 2^9, rad(n) = 2, lp(n, 3) = 8 since n/8^3 = 1. But 8 does not divide 2. n = 704 = 2^6*11, rad(n) = 22, lp(n, 3) = 4 since n/4^3 = 11. But 4 does not divide 22.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
with(NumberTheory): isBicubeful := n -> irem(Radical(n), LargestNthPower(n, 3)) <> 0: select(isBicubeful, [`$`(1..2752)]);
-
Mathematica
bicubQ[n_] := AnyTrue[FactorInteger[n][[;; , 2]], # > 5 &]; Select[Range[3000], bicubQ] (* Amiram Eldar, Jul 13 2022 *)
-
Python
from itertools import count, islice from sympy import factorint def A355265_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:any(map(lambda m:m>5,factorint(n).values())),count(max(startvalue,1))) A355265_list = list(islice(A355265_gen(),30)) # Chai Wah Wu, Jul 12 2022
Formula
A number k is bicubeful iff it is divisible by the 6th power of an integer > 1.
Comments