cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355265 Bicubeful numbers.

Original entry on oeis.org

64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 729, 768, 832, 896, 960, 1024, 1088, 1152, 1216, 1280, 1344, 1408, 1458, 1472, 1536, 1600, 1664, 1728, 1792, 1856, 1920, 1984, 2048, 2112, 2176, 2187, 2240, 2304, 2368, 2432, 2496, 2560, 2624, 2688, 2752
Offset: 1

Views

Author

Peter Luschny, Jul 12 2022

Keywords

Comments

Let lp(n, e) denote the largest positive integer b such that b^e divides n. For example for e = 1, 2, 3, 4 the sequences (lp(n, e), n >= 1) are A000027, A000188, A053150, and A053164. Let rad(n) = A007947(n) be the squarefree kernel of n. k is in this sequence if lp(n, 3) does not divide rad(n). The case e = 1 gives A013929, and the case e = 2 is A046101.
The asymptotic density of this sequence is 1 - 1/zeta(6) = 1 - 945/Pi^6 = 0.017047... . - Amiram Eldar, Jul 13 2022

Examples

			n = 512 = 2^9, rad(n) = 2, lp(n, 3) = 8 since n/8^3 = 1. But 8 does not divide 2.
n = 704 = 2^6*11, rad(n) = 22, lp(n, 3) = 4 since n/4^3 = 11. But 4 does not divide 22.
		

Crossrefs

Cf. A007947, A000188, A053150, A053164, A013929, A046101 (biquadrateful).

Programs

  • Maple
    with(NumberTheory):
    isBicubeful := n -> irem(Radical(n), LargestNthPower(n, 3)) <> 0:
    select(isBicubeful, [`$`(1..2752)]);
  • Mathematica
    bicubQ[n_] := AnyTrue[FactorInteger[n][[;; , 2]], # > 5 &]; Select[Range[3000], bicubQ] (* Amiram Eldar, Jul 13 2022 *)
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A355265_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:any(map(lambda m:m>5,factorint(n).values())),count(max(startvalue,1)))
    A355265_list = list(islice(A355265_gen(),30)) # Chai Wah Wu, Jul 12 2022

Formula

A number k is bicubeful iff it is divisible by the 6th power of an integer > 1.