cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A355260 Triangle read by rows, T(n, k) = Bell(k) * |Stirling1(n, k)|.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 6, 5, 0, 6, 22, 30, 15, 0, 24, 100, 175, 150, 52, 0, 120, 548, 1125, 1275, 780, 203, 0, 720, 3528, 8120, 11025, 9100, 4263, 877, 0, 5040, 26136, 65660, 101535, 101920, 65366, 24556, 4140, 0, 40320, 219168, 590620, 1009260, 1167348, 920808, 478842, 149040, 21147
Offset: 0

Views

Author

Peter Luschny, Jul 06 2022

Keywords

Examples

			Triangle T(n, k) begins:
[0] 1;
[1] 0,   1;
[2] 0,   1,    2;
[3] 0,   2,    6,    5;
[4] 0,   6,   22,   30,   15;
[5] 0,  24,  100,  175,  150,    52;
[6] 0, 120,  548, 1125, 1275,   780,  203;
[7] 0, 720, 3528, 8120, 11025, 9100, 4263, 877;
		

Crossrefs

Cf. A000262 (row sums), A033999 (alternating row sums), A000110 (main diagonal), A000142 (column 1).

Programs

  • Maple
    Bell := n -> combinat[bell](n):
    T := (n,k) -> Bell(k)*abs(Stirling1(n, k)):
    seq(seq(T(n, k), k = 0..n), n = 0..9);
    # Alternative:
    egf := exp(1/(1 - x)^y - 1): ser := series(egf, x, 32):
    cfx := n -> coeff(ser, x, n):
    seq(seq(n!*coeff(cfx(n), y, k), k = 0..n), n = 0..8);
  • Mathematica
    (* Utility function, extracts the lower triangular part of a square matrix. *)
    TriangularForm[T_] := Table[Table[T[[n, k]], {k, 1, n}], {n, 1, Dimensions[T][[1]]}];
    (* The actual calculation: *)
    r := 9; R := Range[0, r];
    T := Table[BellB[k] BellY[n, k, R!], {n, R}, {k, R}];
    T // TriangularForm // Flatten

Formula

T(n, k) = n! * [y^k] [x^n] exp(1/(1 - x)^y - 1).
T(n, k) = Bell(k)*Bell_{n, k}(A000142), where Bell_{n, k}(S) are the partial Bell polynomials mapped on the sequence S; here S are the factorial numbers. See the Mathematica program.
T(n, k) = A000110(k) * A132393(n, k).
Showing 1-1 of 1 results.