A355277 Largest n-digit number k with only odd digits such that the k-th triangular number also has only odd digits.
5, 17, 177, 5573, 79137, 791377, 7913777, 79971937, 557335733, 5995957537, 59995599137, 599591791137, 7991739957973, 79971739957537, 799739357539937, 7991713197753777, 79991971791119137, 799999173991317537, 7997391313911797973
Offset: 1
Examples
T(5) = A000217(5) = 5*6/2 = 5*3 = 15 has only odd digits, and neither T(7) nor T(9) have this property, therefore a(1) = 5.
Links
- M. F. Hasler, Table of n, a(n) for n = 1..24, Sep 08 2022
- S. S. Gupta, Can You Find (CYF) no. 55, Nov 11 2021.
Crossrefs
Programs
-
PARI
apply( A355277(n)=A347475_prec(10^n), [1..15]) \\ M. F. Hasler, Sep 08 2022
-
Python
from itertools import product def A355277(n): for a in '7531': for b in product('97531',repeat=n-1): m = int(a+''.join(b)) if set(str(m*(m+1)>>1)) <= {'1', '3', '5', '7', '9'}: return m # Chai Wah Wu, Sep 08 2022
Formula
a(n) = max { k in A347475 | k < 10^n }.
Comments