This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355301 #44 Mar 09 2024 09:35:54 %S A355301 0,1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,19,20,21,23,24,25,26,27, %T A355301 28,29,30,31,32,34,35,36,37,38,39,40,41,42,43,45,46,47,48,49,50,51,52, %U A355301 53,54,56,57,58,59,60,61,62,63,64,65,67,68,69,70,71,72,73,74,75,76,78,79,80,81,82,83,84,85,86,87,89,90,91,92,93,94,95,96,97,98,101,102,103,104,105,106,107,108,109,120,121,130,131,132,140,141,142,143,150 %N A355301 Normal undulating numbers where "undulating" means that the alternate digits go up and down (or down and up) and "normal" means that the absolute differences between two adjacent digits may differ. %C A355301 This definition comes from Patrick De Geest's link. %C A355301 Other definitions for undulating are present in the OEIS (e.g., A033619, A046075). %C A355301 When the absolute differences between two adjacent digits are always equal (e.g., 85858), these numbers are called smoothly undulating numbers and form a subsequence (A046075). %C A355301 The definition includes the trivial 1- and 2-digit undulating numbers. %C A355301 Subsequence of A043096 where the first different term is A043096(103) = 123 while a(103) = 130. %C A355301 This sequence first differs from A010784 at a(92) = 101, A010784(92) = 102. %C A355301 The sequence differs from A160542 (which contains 100). - _R. J. Mathar_, Aug 05 2022 %H A355301 Patrick De Geest, <a href="http://www.worldofnumbers.com/undulat.htm">Smoothly Undulating Palindromic Primes</a>, World of Numbers. %e A355301 111 is not a term here, but A033619(102) = 111. %e A355301 a(93) = 102, but 102 is not a term of A046075. %e A355301 Some terms: 5276, 918230, 1053837, 263915847, 3636363636363636. %e A355301 Are not terms: 1331, 594571652, 824327182. %p A355301 isA355301 := proc(n) %p A355301 local dgs,i,back,forw ; %p A355301 dgs := convert(n,base,10) ; %p A355301 if nops(dgs) < 2 then %p A355301 return true; %p A355301 end if; %p A355301 for i from 2 to nops(dgs)-1 do %p A355301 back := op(i,dgs) -op(i-1,dgs) ; %p A355301 forw := op(i+1,dgs) -op(i,dgs) ; %p A355301 if back*forw >= 0 then %p A355301 return false; %p A355301 end if ; %p A355301 end do: %p A355301 back := op(-1,dgs) -op(-2,dgs) ; %p A355301 if back = 0 then %p A355301 return false; %p A355301 end if ; %p A355301 return true ; %p A355301 end proc: %p A355301 A355301 := proc(n) %p A355301 option remember ; %p A355301 if n = 1 then %p A355301 0; %p A355301 else %p A355301 for a from procname(n-1)+1 do %p A355301 if isA355301(a) then %p A355301 return a; %p A355301 end if; %p A355301 end do: %p A355301 end if; %p A355301 end proc: %p A355301 seq(A355301(n),n=1..110) ; # _R. J. Mathar_, Aug 05 2022 %t A355301 q[n_] := AllTrue[(s = Sign[Differences[IntegerDigits[n]]]), # != 0 &] && AllTrue[Differences[s], # != 0 &]; Select[Range[0, 100], q] (* _Amiram Eldar_, Jun 28 2022 *) %o A355301 (PARI) isok(m) = if (m<10, return(1)); my(d=digits(m), dd = vector(#d-1, k, sign(d[k+1]-d[k]))); if (#select(x->(x==0), dd), return(0)); my(pdd = vector(#dd-1, k, dd[k+1]*dd[k])); #select(x->(x>0), pdd) == 0; \\ _Michel Marcus_, Jun 30 2022 %Y A355301 Cf. A033619, A043096, A046075. %Y A355301 Cf. A059168 (subsequence of primes). %Y A355301 Differs from A010784, A241157, A241158. %Y A355301 Cf. A355302, A355303, A355304. %K A355301 nonn,base %O A355301 1,3 %A A355301 _Bernard Schott_, Jun 27 2022