cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355302 a(n) is the number of normal undulating integers that divide n.

This page as a plain text file.
%I A355302 #11 Jul 07 2022 16:20:28
%S A355302 1,2,2,3,2,4,2,4,3,4,1,6,2,4,4,5,2,6,2,6,4,2,2,8,3,4,4,6,2,8,2,6,2,4,
%T A355302 4,9,2,4,4,8,2,8,2,3,6,4,2,10,3,6,4,6,2,8,2,8,4,4,2,12,2,4,6,7,4,4,2,
%U A355302 6,4,8,2,12,2,4,6,6,2,8,2,10,5,4,2,12,4,4,4,4,2,12,4,6,4,4,4,12,2,6,3,8
%N A355302 a(n) is the number of normal undulating integers that divide n.
%C A355302 Normal undulating integers are in A355301.
%e A355302 44 has 6 divisors: {1, 2, 4, 11, 22, 44} of which 3 are not normal undulating integers: {11, 22, 44}, hence a(44) = 6 - 3 = 3.
%t A355302 nuQ[n_] := AllTrue[(s = Sign[Differences[IntegerDigits[n]]]), # != 0 &] && AllTrue[Differences[s], # != 0 &]; a[n_] := DivisorSum[n, 1 &, nuQ[#] &]; Array[a, 100] (* _Amiram Eldar_, Jun 29 2022 *)
%o A355302 (PARI) isok(m) = if (m<10, return(1)); my(d=digits(m), dd = vector(#d-1, k, sign(d[k+1]-d[k]))); if (#select(x->(x==0), dd), return(0)); my(pdd = vector(#dd-1, k, dd[k+1]*dd[k])); #select(x->(x>0), pdd) == 0; \\ A355301
%o A355302 a(n) = sumdiv(n, d, isok(d)); \\ _Michel Marcus_, Jun 30 2022
%Y A355302 Cf. A355301, A355303, A355304.
%K A355302 nonn,base
%O A355302 1,2
%A A355302 _Bernard Schott_, Jun 29 2022