cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355304 Integers whose number of normal undulating divisors sets a new record.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 1080, 1260, 1440, 1680, 2160, 2520, 5040, 7560, 10080, 15120, 21840, 28080, 32760, 56160, 65520, 98280, 131040, 196560, 393120, 589680, 786240, 1113840, 1670760, 2227680, 3341520, 6683040, 13366080, 20049120
Offset: 1

Views

Author

Bernard Schott, Jun 30 2022

Keywords

Comments

Normal undulating integers are in A355301.
The first 14 terms are also the first 14 highly composite numbers in A002182, then A002182(15) = 840 while a(15) = 1080. Indeed, 840 is the smallest integer that has 32 divisors of which only 28 are normal undulating integers, while 1080 has also 32 divisors of which 30 are normal undulating integers.
Corresponding records of number of normal undulating divisors are 1, 2, 3, 4, 6, 8, 9, 10, 12, ...

Examples

			a(6) = 24 is in the sequence because A355302(24) is larger than any earlier value in A355302.
		

Crossrefs

Similar, but with divisors that are: A046952 (squares), A053624 (odd), A181808 (even), A093036 (palindromes), A340548 (repdigits), A340549 (repunits), A350756 (triangular).

Programs

  • Mathematica
    nuQ[n_] := AllTrue[(s = Sign[Differences[IntegerDigits[n]]]), # != 0 &] && AllTrue[Differences[s], # != 0 &]; dm = -1; seq = {}; Do[If[(d = DivisorSum[n, 1 &, nuQ[#] &]) > dm, dm = d; AppendTo[seq, n]], {n, 1, 10^5}]; seq (* Amiram Eldar, Jun 30 2022 *)

Extensions

More terms from Amiram Eldar, Jun 30 2022