cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355328 Decimal expansion of the number whose binary expansion differs from its decimal expansion only in the first digit.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1
Offset: 0

Views

Author

Leonid Broukhis, Jun 29 2022

Keywords

Comments

The decimal fraction 0.1 has binary expansion starting with 0.0001...; copying the suffix 001 (3 digits, as 3 < log_2(10) < 4) we obtain 0.1001, which expands to 0.00011001101, etc.
Alternatively the process can be described as greedily expressing 1/2 with digits of weights 1/2^n-1/10^n. With f(n)=1/2^n-1/10^n, 0.5 = f(1)+f(4)+f(5)+f(8)+f(9)+f(11)...

Examples

			0.100110011010000011001111010001110100101001000111010001001101001011...
		

Crossrefs

Cf. A352677 (golden base = binary).

Programs

  • Mathematica
    seq[len_] := Module[{s = Table[0, {len}], x = 1/10, n = 1, c = 0}, s[[1]] = 1; While[n < len, While[1/2^n - 1/10^n > x, n++]; c++; s[[n]] = 1; x -= (1/2^n - 1/10^n)]; s]; seq[100] (* Amiram Eldar, Jun 29 2022 *)