cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355329 Least increasing sequence of primes such that a(n) - 1 is a multiple of 6*n.

Original entry on oeis.org

7, 13, 19, 73, 151, 181, 211, 241, 271, 421, 463, 577, 859, 1009, 1171, 1249, 1327, 1621, 2053, 2161, 2269, 2377, 3037, 3169, 3301, 3433, 3727, 4201, 5569, 5581, 5953, 6337, 6733, 7549, 7561, 7993, 9103, 9349, 9829, 10321, 10333, 10837, 11353, 11617, 12421, 12697, 12973, 13249, 14407, 15601
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jun 29 2022

Keywords

Comments

a(n) is the least prime == 1 mod (6*n) and (for n >= 2) greater than a(n-1).

Examples

			a(5) = 151 because 151 is prime, 151-1 = 150 is divisible by 6*5, and 151 > a(4) = 73.
		

Crossrefs

Cf. A070850.

Programs

  • Maple
    A:= Vector(100):
    A[1]:= 7:
    for n from 2 to 100 do
      for k from floor((A[n-1]-1)/(6*n))+1  do
        p:= 6*n*k+1;
        if isprime(p) then A[n]:= p; break fi
    od od:
    convert(A,list);
  • Mathematica
    a[n_] := a[n] = Module[{p = If[n == 1, 2, NextPrime[a[n - 1]]]}, While[!Divisible[p - 1, 6*n], p = NextPrime[p]]; p]; Array[a, 50] (* Amiram Eldar, Jun 29 2022 *)
  • Python
    from itertools import count, islice
    from sympy import nextprime
    def A355329_gen(): # generator of terms
        p = 2
        for m in count(6,6):
            while q:=(p-1)%m:
                p = nextprime(p+m-q-1)
            yield p
            p = nextprime(p)
    A355329_list = list(islice(A355329_gen(),30)) # Chai Wah Wu, Jun 30 2022