This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355345 #8 Jul 27 2022 10:30:52 %S A355345 2,-2,-5,6,-7,14,-6,-9,27,-30,10,-11,44,-77,55,-10,-13,65,-156,182, %T A355345 -91,14,-15,90,-275,450,-378,140,-14,-17,119,-442,935,-1122,714,-204, %U A355345 18,-19,152,-665,1729,-2717,2508,-1254,285,-18,-21,189,-952,2940,-5733,7007,-5148,2079,-385,22,-23,230,-1311,4692,-10948,16744,-16445,9867,-3289,506 %N A355345 G.f.: Sum_{n=-oo..+oo} x^(n*(n+1)/2) * C(x)^(2*n-1), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108). %H A355345 Paul D. Hanna, <a href="/A355345/b355345.txt">Table of n, a(n) for n = 0..2555</a> %F A355345 G.f. A(x) = Sum_{n>=0} a(n)*x^n may be obtained from the following expressions; here, C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108). %F A355345 (1) A(x) = Sum_{n=-oo..+oo} x^(n*(n+1)/2) * C(x)^(2*n-1). %F A355345 (2) A(x) = Sum_{n>=0} x^(n*(n+1)/2) * (C(x)^(2*n-1) + 1/C(x)^(2*n+3)). %F A355345 (3) A(x) = 1/C(x)^3 * Product_{n>=1} (1 + x^(n-1)*C(x)^2) * (1 + x^n/C(x)^2) * (1-x^n), by the Jacobi triple product identity. %F A355345 (4) A(x) = 1/P(x)^3 + Sum_{n>=0} Sum_{k>=0} (-1)^k * (binomial(2*n+k+3,k) + binomial(2*n+k+2,k-1)) * x^((n+k)*(n+k+1)/2 + k), where P(x) = Product_{n>=1} 1/(1-x^n) is the partition function. %F A355345 (5) a((n+k)*(n+k+1)/2 + k) = [x^k] (-1)^n*(2*n+1) + (1-x)/(1+x)^(2*n+4), for n >= 0, k >= 0. %F A355345 (6) a((n+k)*(n+k+1)/2 + k) = (-1)^k*(binomial(2*n+k+3,k) + binomial(2*n+k+2,k-1)), for n >= 0, k >= 1. %e A355345 G.f.: A(x) = 2 - 2*x - 5*x^2 + 6*x^3 - 7*x^4 + 14*x^5 - 6*x^6 - 9*x^7 + 27*x^8 - 30*x^9 + 10*x^10 - 11*x^11 + 44*x^12 - 77*x^13 + 55*x^14 - 10*x^15 - 13*x^16 + 65*x^17 - 156*x^18 + 182*x^19 - 91*x^20 + ... %e A355345 such that %e A355345 A(x) = ... + x^6/C(x)^9 + x^3/C(x)^7 + x/C(x)^5 + 1/C(x)^3 + 1/C(x) + x*C(x) + x^3*C(x)^3 + x^6*C(x)^5 + x^10*C(x)^7 + x^15*C(x)^9 + ... + x^(n*(n+1)/2) * C(x)^(2*n-1) + ... %e A355345 also %e A355345 A(x) = 1/C(x)^3 * (1 + C(x)^2)*(1 + x/C(x)^2)*(1-x) * (1 + x*C(x)^2)*(1 + x^2/C(x)^2)*(1-x^2) * (1 + x^2*C(x)^2)*(1 + x^3/C(x)^2)*(1-x^3) * (1 + x^3*C(x)^2)*(1 + x^4/C(x)^2)*(1-x^4) * ... * (1 + x^(n-1)*C(x)^2)*(1 + x^n/C(x)^2)*(1-x^n) * ... %e A355345 where C(x) = 1 + x*C(x)^2 begins %e A355345 C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + ... + A000108(n)*x^n + ... %e A355345 RELATED TABLE. %e A355345 This sequence also forms the antidiagonals of the rectangular table given by: %e A355345 n = 0: [ 2, -5, 14, -30, 55, -91, 140, -204, ...]; %e A355345 n = 1: [ -2, -7, 27, -77, 182, -378, 714, -1254, ...]; %e A355345 n = 2: [ 6, -9, 44, -156, 450, -1122, 2508, -5148, ...]; %e A355345 n = 3: [ -6, -11, 65, -275, 935, -2717, 7007, -16445, ...]; %e A355345 n = 4: [ 10, -13, 90, -442, 1729, -5733, 16744, -44200, ...]; %e A355345 n = 5: [-10, -15, 119, -665, 2940, -10948, 35700, -104652, ...]; %e A355345 n = 6: [ 14, -17, 152, -952, 4692, -19380, 69768, -224808, ...]; %e A355345 n = 7: [-14, -19, 189, -1311, 7125, -32319, 127281, -447051, ...]; %e A355345 n = 8: [ 18, -21, 230, -1750, 10395, -51359, 219604, -834900, ...]; %e A355345 ... %e A355345 in which row n has g.f.: (-1)^n*(2*n+1) + (1-x)/(1+x)^(2*n+4) for n >= 0. %e A355345 Thus, the terms of this sequence obey the rule %e A355345 a((n+k)*(n+k+1)/2 + k) = [x^k] ((-1)^n*(2*n+1) + (1-x)/(1+x)^(2*n+4)), for n >= 0, k = 0..n. %e A355345 Equivalently, %e A355345 a((n+k)*(n+k+1)/2 + k) = (-1)^k*(binomial(2*n+k+3,k) + binomial(2*n+k+2,k-1)), for n >= 0, k >= 1, with a(n*(2*n+1)) = 2*(2*n+1) and a((n+1)*(2*n+1)) = -2*(2*n+1) for n >= 0. %e A355345 For example, %e A355345 a((n+1)*(n+2)/2 + 1) = -(2*n+5) for n >= 0, %e A355345 a((n+2)*(n+3)/2 + 2) = (n+2)*(2*n+7) for n >= 0, %e A355345 a(n*(n+3)/2) = (-1)^n * (n+1)*(n+2)*(2*n+3)/6 for n >= 1, %e A355345 a(2*n*(n+1)) = (-1)^n * (binomial(3*n+3,n) + binomial(3*n+2,n-1)) = (-1)^n * A355347(n), for n >= 1. %e A355345 ... %o A355345 (PARI) {a(n) = my(A,C=1/x*serreverse(x-x^2 +O(x^(n+2))),M=ceil(sqrt(2*n+9))); %o A355345 A = sum(m=-M,M, x^(m*(m+1)/2) * C^(2*m-1) ); polcoeff(A,n)} %o A355345 for(n=0,70,print1(a(n),", ")) %o A355345 (PARI) {a(n) = my(A,M=ceil(sqrt(2*n+1))); %o A355345 A = sum(m=0,M, sum(k=0,n-m*(m+1)/2, x^((m+k)*(m+k+1)/2 + k) * polcoeff( (-1)^m*(2*m+1) + (1-x)/(1+x +x^2*O(x^k))^(2*m+4) ,k) )); polcoeff(A,n)} %o A355345 for(n=0,70,print1(a(n),", ")) %Y A355345 Cf. A132460, A034807, A000108, A355341, A355342, A355346, A355347. %K A355345 sign %O A355345 0,1 %A A355345 _Paul D. Hanna_, Jul 25 2022