This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355348 #13 Aug 03 2022 06:17:54 %S A355348 2,-7,0,26,-42,63,-111,90,54,-273,451,-396,275,-561,1287,-1781,1365, %T A355348 -351,-871,2938,-5733,7008,-5172,2331,-1905,5835,-14688,24752,-27455, %U A355348 19278,-7684,-561,10251,-32317,69768,-104652,107407,-72960,31293,-10621,18069,-63783 %N A355348 G.f.: Sum_{n=-oo..+oo} x^(n*(n+1)/2) * C(x)^(3*n-3), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108). %H A355348 Paul D. Hanna, <a href="/A355348/b355348.txt">Table of n, a(n) for n = 0..2555</a> %F A355348 G.f. A(x) = Sum_{n>=0} a(n)*x^n may be obtained from the following expressions; here, C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108). %F A355348 (1) A(x) = Sum_{n=-oo..+oo} x^(n*(n+1)/2) * C(x)^(3*n-3). %F A355348 (2) A(x) = Sum_{n>=0} x^(n*(n+1)/2) * (C(x)^(3*n-3) + 1/C(x)^(3*n+6)). %F A355348 (3) A(x) = 1/C(x)^6 * Product_{n>=1} (1 + x^(n-1)*C(x)^3) * (1 + x^n/C(x)^3) * (1-x^n), by the Jacobi triple product identity. %e A355348 G.f.: A(x) = 2 - 7*x + 26*x^3 - 42*x^4 + 63*x^5 - 111*x^6 + 90*x^7 + 54*x^8 - 273*x^9 + 451*x^10 - 396*x^11 + 275*x^12 - 561*x^13 + 1287*x^14 - 1781*x^15 + ... %e A355348 such that %e A355348 A(x) = ... + x^6/C(x)^15 + x^3/C(x)^12 + x/C(x)^9 + 1/C(x)^6 + 1/C(x)^3 + x + x^3*C(x)^3 + x^6*C(x)^6 + x^10*C(x)^9 + x^15*C(x)^12 + ... + x^(n*(n+1)/2) * C(x)^(3*n-3) + ... %e A355348 also %e A355348 A(x) = 1/C(x)^6 * (1 + C(x)^3)*(1 + x/C(x)^3)*(1-x) * (1 + x*C(x)^3)*(1 + x^2/C(x)^3)*(1-x^2) * (1 + x^2*C(x)^3)*(1 + x^3/C(x)^3)*(1-x^3) * (1 + x^3*C(x)^3)*(1 + x^4/C(x)^3)*(1-x^4) * ... * (1 + x^(n-1)*C(x)^3)*(1 + x^n/C(x)^3)*(1-x^n) * ... %e A355348 where C(x) = 1 + x*C(x)^2 begins %e A355348 C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + ... + A000108(n)*x^n + ... %o A355348 (PARI) {a(n) = my(A,C=1/x*serreverse(x-x^2 +O(x^(n+2))),M=ceil(sqrt(2*n+9))); %o A355348 A = sum(m=-M,M, x^(m*(m+1)/2) * C^(3*m-3) ); polcoeff(A,n)} %o A355348 for(n=0,70,print1(a(n),", ")) %Y A355348 Cf. A355341, A355345, A000108. %K A355348 sign %O A355348 0,1 %A A355348 _Paul D. Hanna_, Jul 28 2022