cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355352 G.f. A(x) satisfies: 2*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

This page as a plain text file.
%I A355352 #5 Jun 30 2022 10:39:45
%S A355352 1,2,10,50,248,1294,7092,40426,236698,1412860,8561906,52546920,
%T A355352 326011118,2041512624,12886608654,81908498582,523780469070,
%U A355352 3367399778356,21752611767804,141118852010146,919035717462824,6006146649948722,39376700396145616,258907024677687808
%N A355352 G.f. A(x) satisfies: 2*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
%C A355352 a(n) = Sum_{k=0..n} A355350(n,k) * 2^k for n >= 0.
%H A355352 Paul D. Hanna, <a href="/A355352/b355352.txt">Table of n, a(n) for n = 0..400</a>
%F A355352 G.f. A(x) satisfies:
%F A355352 (1) 2*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
%F A355352 (2) 2*x*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.
%e A355352 G.f.: A(x) = 1 + 2*x + 10*x^2 + 50*x^3 + 248*x^4 + 1294*x^5 + 7092*x^6 + 40426*x^7 + 236698*x^8 + 1412860*x^9 + 8561906*x^10 + ...
%e A355352 where
%e A355352 2*x = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
%e A355352 also,
%e A355352 2*x*P(x) = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * ...
%e A355352 where P(x) is the partition function and begins
%e A355352 P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
%o A355352 (PARI) {a(n) = my(A=[1,2],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*n+9));
%o A355352 A[#A] = -polcoeff( sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));A[n+1]}
%o A355352 for(n=0,30,print1(a(n),", "))
%Y A355352 Cf. A355350, A355351, A355353, A355354, A355355, A355356, A355357.
%K A355352 nonn
%O A355352 0,2
%A A355352 _Paul D. Hanna_, Jun 29 2022