This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355384 #14 May 09 2025 01:45:34 %S A355384 1,1,2,4,12,30,66,164,419,1049,2625,6372,15451,37335,89855,216523, %T A355384 518714,1235897,2930050,6911149,16217817,37914515,88304358,204971388, %U A355384 474172899,1093547574,2513959446,5761735383,13165908506,29998936859,68164839887,154478212575 %N A355384 Number of pairs (y, v) where y is a composition of n and v is a (not necessarily contiguous) subsequence of y whose length equals the number of distinct parts in y. %C A355384 If a composition is regarded as an arrow from the number of parts to the number of distinct parts, this sequence counts composable containments of compositions. %H A355384 Christian Sievers, <a href="/A355384/b355384.txt">Table of n, a(n) for n = 0..59</a> %e A355384 The initial terms count the following containments: %e A355384 ()() (1)(1) (2)(2) (3)(3) (4)(4) %e A355384 (11)(1) (21)(21) (31)(31) %e A355384 (12)(12) (13)(13) %e A355384 (111)(1) (22)(2) %e A355384 (211)(11) %e A355384 (211)(21) %e A355384 (121)(11) %e A355384 (121)(12) %e A355384 (121)(21) %e A355384 (112)(11) %e A355384 (112)(12) %e A355384 (1111)(1) %t A355384 Table[Sum[Length[Union[Subsets[y,{Length[Union[y]]}]]],{y,Join@@Permutations/@IntegerPartitions[n]}],{n,0,5}] %Y A355384 The homog. case is A032020, w/o containment A355388 (partitions A355385). %Y A355384 For partitions we have A355383, homog. A000009, w/ multiplicity A339006. %Y A355384 A000244 counts splittings of compositions, for partitions A323583. %Y A355384 Cf. A001970, A022811, A063834, A070933, A072706, A133494, A336139. %K A355384 nonn %O A355384 0,3 %A A355384 _Gus Wiseman_, Jul 01 2022 %E A355384 a(21) and beyond from _Christian Sievers_, May 08 2025