This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355385 #10 Dec 31 2022 20:30:03 %S A355385 1,1,2,3,7,12,25,43,81,141,243,409,699,1132,1844,2995,4744,7408,11655, %T A355385 17839,27509,41546,62879,93537,139974,205547,302714,440097,640968, %U A355385 921774,1327538,1891548,2696635,3809860,5380257,7540778,10561566,14687109,20408170,28183998,38882009 %N A355385 Number of pairs (y, v) of integer partitions of n where the length of v equals the number of distinct parts in y. %C A355385 Also the number of composable pairs of integer partitions of n, where a partition is regarded as an arrow from (number of parts) to (number of distinct parts). Is there a nice choice of a composition operation making this into an associative category? %H A355385 Andrew Howroyd, <a href="/A355385/b355385.txt">Table of n, a(n) for n = 0..1000</a> %F A355385 a(n) = Sum_{j >= 1} A116608(n,j) * A008284(n,j) for n > 0. - _Andrew Howroyd_, Dec 31 2022 %e A355385 The a(0) = 1 through a(5) = 10 pairs: %e A355385 ()() (1)(1) (2)(2) (3)(3) (4)(4) (5)(5) %e A355385 (11)(2) (21)(21) (31)(31) (41)(41) %e A355385 (111)(3) (31)(22) (41)(32) %e A355385 (22)(4) (32)(41) %e A355385 (211)(31) (32)(32) %e A355385 (211)(22) (311)(41) %e A355385 (1111)(4) (311)(32) %e A355385 (221)(41) %e A355385 (221)(32) %e A355385 (2111)(41) %e A355385 (2111)(32) %e A355385 (11111)(5) %t A355385 Table[Length[Select[Tuples[IntegerPartitions[n],2],Length[Union[#[[1]]]]==Length[#[[2]]]&]],{n,0,15}] %o A355385 (PARI) \\ P gives A008284 and R gives A116608 as g.f.'s. %o A355385 P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))} %o A355385 R(n,y) = {prod(k=1, n, 1 + y/(1 - x^k) - y + O(x*x^n))} %o A355385 seq(n) = {my(g=Vec(P(n,y)), h=Vec(R(n,y))); vector(n+1, i, my(p=g[i], q=h[i]); sum(j=0, poldegree(q), polcoef(p,j)*polcoef(q,j)))} \\ _Andrew Howroyd_, Dec 31 2022 %Y A355385 The inhomogeneous version with containment and multiplicity is A339006. %Y A355385 The inhomogeneous version with containment is A355383. %Y A355385 The inhomogeneous version with containment for compositions is A355384. %Y A355385 The version for compositions is A355388. %Y A355385 A001970 counts multiset partitions of partitions. %Y A355385 A063834 counts partitions of each part of a partition. %Y A355385 A323583 counts splittings of partitions. %Y A355385 Cf. A000009, A008284, A022811, A032020, A070933, A072706, A116608, A279787, A319910, A336135. %K A355385 nonn %O A355385 0,3 %A A355385 _Gus Wiseman_, Jul 02 2022 %E A355385 Terms a(26) and beyond from _Andrew Howroyd_, Dec 31 2022