This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355386 #13 Jul 07 2022 23:30:11 %S A355386 1,12,36,120,180,360,840,1260,5400,27000,2520,5040,6300,7560,15120, %T A355386 12600,25200 %N A355386 Position of first appearance of n in A355382, where A355382(m) = number of divisors d of m such that bigomega(d) = omega(m); or a(n) = -1 if n does not appear in A355382. %C A355386 The first position of -1 appears to be 18, pointed out by Amiram Eldar. %C A355386 The terms are not always increasing. %C A355386 The statistic omega = A001221 counts distinct prime factors (without multiplicity). %C A355386 The statistic bigomega = A001222 counts prime factors with multiplicity. %e A355386 The terms together with their prime indices begin: %e A355386 1: {} %e A355386 12: {1,1,2} %e A355386 36: {1,1,2,2} %e A355386 120: {1,1,1,2,3} %e A355386 180: {1,1,2,2,3} %e A355386 360: {1,1,1,2,2,3} %e A355386 840: {1,1,1,2,3,4} %e A355386 1260: {1,1,2,2,3,4} %e A355386 5400: {1,1,1,2,2,2,3,3} %e A355386 27000: {1,1,1,2,2,2,3,3,3} %e A355386 2520: {1,1,1,2,2,3,4} %e A355386 5040: {1,1,1,1,2,2,3,4} %e A355386 6300: {1,1,2,2,3,3,4} %e A355386 7560: {1,1,1,2,2,2,3,4} %e A355386 15120: {1,1,1,1,2,2,2,3,4} %e A355386 The terms together with their divisors satisfying the condition begin: %e A355386 1: 1 %e A355386 12: 4, 6 %e A355386 36: 4, 6, 9 %e A355386 120: 8, 12, 20, 30 %e A355386 180: 12, 18, 20, 30, 45 %e A355386 360: 8, 12, 18, 20, 30, 45 %e A355386 840: 24, 40, 56, 60, 84, 140, 210 %e A355386 1260: 36, 60, 84, 90, 126, 140, 210, 315 %e A355386 5400: 8, 12, 18, 20, 27, 30, 45, 50, 75 %e A355386 27000: 8, 12, 18, 20, 27, 30, 45, 50, 75, 125 %e A355386 2520: 24, 36, 40, 56, 60, 84, 90, 126, 140, 210, 315 %e A355386 5040: 16, 24, 36, 40, 56, 60, 84, 90, 126, 140, 210, 315 %e A355386 6300: 36, 60, 84, 90, 100, 126, 140, 150, 210, 225, 315, 350, 525 %t A355386 tf=Table[Length[Select[Divisors[n],PrimeOmega[#]==PrimeNu[n]&]],{n,1000}]; %t A355386 Table[Position[tf,n][[1,1]],{n,Select[Union[tf],SubsetQ[tf,Range[#]]&]}] %Y A355386 These are the positions of first appearances in A355382, which is the version of A181591 without multiplicity. %Y A355386 A000005 counts divisors. %Y A355386 A001221 counts prime indices without multiplicity. %Y A355386 A001222 counts prime indices with multiplicity. %Y A355386 A070175 gives representatives for bigomega and omega, triangle A303555. %Y A355386 A355383 counts cmpsbl. pairs of partitions with containment, comps. A355384. %Y A355386 Cf. A000712, A022811, A056239, A071625, A181819, A319910, A339006. %K A355386 nonn,more %O A355386 1,2 %A A355386 _Gus Wiseman_, Jul 02 2022