This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355387 #19 May 06 2025 10:04:23 %S A355387 1,2,5,14,37,98,259,682,1791,4697,12303,32196,84199,220087,575067, %T A355387 1502176,3923117,10244069,26746171,69825070,182276806,475804961, %U A355387 1241965456,3241732629,8461261457,22084402087,57640875725,150442742575,392652788250,1024810764496 %N A355387 Number of ways to choose a distinct subsequence of an integer composition of n. %C A355387 By "distinct" we mean equal subsequences are counted only once. For example, the pair (1,1)(1) is counted only once even though (1) is a subsequence of (1,1) in two ways. The version with multiplicity is A025192. %H A355387 Christian Sievers, <a href="/A355387/b355387.txt">Table of n, a(n) for n = 0..2000</a> %F A355387 G.f.: (1-x)/((1-2*x)*(1-f)) where f = Sum_{k>=1} x^k/(1-x/(1-x)+x^k) is the generating function for A331330. - _Christian Sievers_, May 06 2025 %e A355387 The a(3) = 14 pairings of a composition with a chosen subsequence: %e A355387 (3)() (3)(3) %e A355387 (21)() (21)(1) (21)(2) (21)(21) %e A355387 (12)() (12)(1) (12)(2) (12)(12) %e A355387 (111)() (111)(1) (111)(11) (111)(111) %t A355387 Table[Sum[Length[Union[Subsets[y]]],{y,Join@@Permutations/@IntegerPartitions[n]}],{n,0,6}] %o A355387 (PARI) lista(n)=my(f=sum(k=1,n,(x^k+x*O(x^n))/(1-x/(1-x)+x^k)));Vec((1-x)/((1-2*x)*(1-f))) \\ _Christian Sievers_, May 06 2025 %Y A355387 For partitions we have A000712, composable A339006. %Y A355387 The homogeneous version is A011782, without containment A000302. %Y A355387 With multiplicity we have A025192, for partitions A070933. %Y A355387 The strict case is A032005. %Y A355387 The case of strict subsequences is A236002. %Y A355387 The composable case is A355384, homogeneous without containment A355388. %Y A355387 A075900 counts compositions of each part of a partition. %Y A355387 A304961 counts compositions of each part of a strict partition. %Y A355387 A307068 counts strict compositions of each part of a composition. %Y A355387 A336127 counts compositions of each part of a strict composition. %Y A355387 Cf. A011782, A022811, A032020, A063834, A133494, A181591, A323583, A331330, A336128, A336130, A336139, A355382, A355383. %K A355387 nonn %O A355387 0,2 %A A355387 _Gus Wiseman_, Jul 04 2022 %E A355387 a(16) and beyond from _Christian Sievers_, May 06 2025