cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355389 Number of unordered pairs of distinct integer partitions of n.

This page as a plain text file.
%I A355389 #13 Feb 07 2024 21:07:47
%S A355389 0,0,1,3,10,21,55,105,231,435,861,1540,2926,5050,9045,15400,26565,
%T A355389 43956,73920,119805,196251,313236,501501,786885,1239525,1915903,
%U A355389 2965830,4528545,6909903,10417330,15699606,23403061,34848726,51435153,75761895,110744403,161577276
%N A355389 Number of unordered pairs of distinct integer partitions of n.
%F A355389 a(n) = binomial(A000041(n), 2) = A355390(n)/2.
%e A355389 The a(0) = 0 through a(4) = 10 pairs:
%e A355389   .  .  (2)(11)  (3)(21)    (4)(22)
%e A355389                  (3)(111)   (4)(31)
%e A355389                  (21)(111)  (22)(31)
%e A355389                             (4)(211)
%e A355389                             (22)(211)
%e A355389                             (31)(211)
%e A355389                             (4)(1111)
%e A355389                             (22)(1111)
%e A355389                             (31)(1111)
%e A355389                             (211)(1111)
%p A355389 a:= n-> binomial(combinat[numbpart](n),2):
%p A355389 seq(a(n), n=0..36);  # _Alois P. Heinz_, Feb 07 2024
%t A355389 Table[Binomial[PartitionsP[n],2],{n,0,6}]
%o A355389 (PARI) a(n) = binomial(numbpart(n), 2); \\ _Michel Marcus_, Jul 05 2022
%Y A355389 The version for compositions is A006516.
%Y A355389 Without distinctness we get A086737.
%Y A355389 The unordered version is A355390, without distinctness A001255.
%Y A355389 A000041 counts partitions, strict A000009.
%Y A355389 A001970 counts multiset partitions of partitions.
%Y A355389 A063834 counts partitions of each part of a partition.
%Y A355389 Cf. A022811, A070933, A316245, A317715, A319794, A319910, A323433, A339006, A355385.
%K A355389 nonn
%O A355389 0,4
%A A355389 _Gus Wiseman_, Jul 04 2022