cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355390 Number of ordered pairs of distinct integer partitions of n.

This page as a plain text file.
%I A355390 #10 Jul 05 2022 06:47:25
%S A355390 0,0,2,6,20,42,110,210,462,870,1722,3080,5852,10100,18090,30800,53130,
%T A355390 87912,147840,239610,392502,626472,1003002,1573770,2479050,3831806,
%U A355390 5931660,9057090,13819806,20834660,31399212,46806122,69697452,102870306,151523790,221488806
%N A355390 Number of ordered pairs of distinct integer partitions of n.
%F A355390 a(n) = 2*A355389(n) = 2*binomial(A000041(n), 2).
%e A355390 The a(0) = 0 through a(3) = 6 pairs:
%e A355390   .  .  (11)(2)  (21)(3)
%e A355390         (2)(11)  (3)(21)
%e A355390                  (111)(3)
%e A355390                  (3)(111)
%e A355390                  (111)(21)
%e A355390                  (21)(111)
%t A355390 Table[Length[Select[Tuples[IntegerPartitions[n],2],UnsameQ@@#&]],{n,0,15}]
%o A355390 (PARI) a(n) = 2*binomial(numbpart(n), 2); \\ _Michel Marcus_, Jul 05 2022
%Y A355390 Without distinctness we have A001255, unordered A086737.
%Y A355390 The version for compositions is A020522, unordered A006516.
%Y A355390 The unordered version is A355389.
%Y A355390 A000041 counts partitions, strict A000009.
%Y A355390 A001970 counts multiset partitions of partitions.
%Y A355390 A063834 counts partitions of each part of a partition.
%Y A355390 Cf. A022811, A070933, A316245, A317715, A319910, A323433, A323583, A339006, A355385.
%K A355390 nonn
%O A355390 0,3
%A A355390 _Gus Wiseman_, Jul 04 2022