This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355390 #10 Jul 05 2022 06:47:25 %S A355390 0,0,2,6,20,42,110,210,462,870,1722,3080,5852,10100,18090,30800,53130, %T A355390 87912,147840,239610,392502,626472,1003002,1573770,2479050,3831806, %U A355390 5931660,9057090,13819806,20834660,31399212,46806122,69697452,102870306,151523790,221488806 %N A355390 Number of ordered pairs of distinct integer partitions of n. %F A355390 a(n) = 2*A355389(n) = 2*binomial(A000041(n), 2). %e A355390 The a(0) = 0 through a(3) = 6 pairs: %e A355390 . . (11)(2) (21)(3) %e A355390 (2)(11) (3)(21) %e A355390 (111)(3) %e A355390 (3)(111) %e A355390 (111)(21) %e A355390 (21)(111) %t A355390 Table[Length[Select[Tuples[IntegerPartitions[n],2],UnsameQ@@#&]],{n,0,15}] %o A355390 (PARI) a(n) = 2*binomial(numbpart(n), 2); \\ _Michel Marcus_, Jul 05 2022 %Y A355390 Without distinctness we have A001255, unordered A086737. %Y A355390 The version for compositions is A020522, unordered A006516. %Y A355390 The unordered version is A355389. %Y A355390 A000041 counts partitions, strict A000009. %Y A355390 A001970 counts multiset partitions of partitions. %Y A355390 A063834 counts partitions of each part of a partition. %Y A355390 Cf. A022811, A070933, A316245, A317715, A319910, A323433, A323583, A339006, A355385. %K A355390 nonn %O A355390 0,3 %A A355390 _Gus Wiseman_, Jul 04 2022