This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355391 #21 Jul 10 2022 13:23:42 %S A355391 1,4,8,16,32,24,128,256,512,48,2048,4096,8192,16384,96,65536,131072, %T A355391 262144,524288,240,192,4194304,8388608,16777216,33554432,67108864, %U A355391 134217728,384,536870912,1073741824,2147483648,4294967296,8589934592,17179869184,480,768,137438953472 %N A355391 Position of first appearance of n in A181591 = binomial(bigomega(n), omega(n)). %C A355391 The statistic omega = A001221 counts distinct prime factors (without multiplicity). %C A355391 The statistic bigomega = A001222 counts prime factors with multiplicity. %C A355391 We have A181591(2^k) = k, so the sequence is fully defined. Positions meeting this maximum are A185024, complement A006987. %H A355391 Amiram Eldar, <a href="/A355391/b355391.txt">Table of n, a(n) for n = 1..168</a> %F A355391 binomial(bigomega(a(n)), omega(a(n))) = n. %e A355391 The terms together with their prime indices begin: %e A355391 1: {} %e A355391 4: {1,1} %e A355391 8: {1,1,1} %e A355391 16: {1,1,1,1} %e A355391 32: {1,1,1,1,1} %e A355391 24: {1,1,1,2} %e A355391 128: {1,1,1,1,1,1,1} %e A355391 256: {1,1,1,1,1,1,1,1} %e A355391 512: {1,1,1,1,1,1,1,1,1} %e A355391 48: {1,1,1,1,2} %e A355391 2048: {1,1,1,1,1,1,1,1,1,1,1} %e A355391 4096: {1,1,1,1,1,1,1,1,1,1,1,1} %e A355391 8192: {1,1,1,1,1,1,1,1,1,1,1,1,1} %e A355391 16384: {1,1,1,1,1,1,1,1,1,1,1,1,1,1} %e A355391 96: {1,1,1,1,1,2} %e A355391 65536: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} %e A355391 131072: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} %e A355391 262144: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} %e A355391 524288: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} %e A355391 240: {1,1,1,1,2,3} %e A355391 192: {1,1,1,1,1,1,2} %t A355391 s=Table[Binomial[PrimeOmega[n],PrimeNu[n]],{n,1000}]; %t A355391 Table[Position[s,k][[1,1]],{k,Select[Union[s],SubsetQ[s,Range[#]]&]}] %o A355391 (PARI) f(n) = binomial(bigomega(n), omega(n)); \\ A181591 %o A355391 a(n) = my(k=1); while (f(k) != n, k++); k; \\ _Michel Marcus_, Jul 10 2022 %Y A355391 Positions of powers of 2 are A185024, complement A006987. %Y A355391 Counting multiplicity gives A355386. %Y A355391 The sorted version is A355392. %Y A355391 A000005 counts divisors. %Y A355391 A001221 counts prime factors without multiplicity. %Y A355391 A001222 count prime factors with multiplicity. %Y A355391 A070175 gives representatives for bigomega and omega, triangle A303555. %Y A355391 Cf. A022811, A056239 , A071625, A118914, A181819, A323014, A323023, A355383 (with multiplicity A339006), A355384. %K A355391 nonn %O A355391 1,2 %A A355391 _Gus Wiseman_, Jul 04 2022 %E A355391 a(22)-a(28) from _Michel Marcus_, Jul 10 2022 %E A355391 a(29)-a(37) from _Amiram Eldar_, Jul 10 2022