A355393 Number of integer partitions of n such that, for all parts x of multiplicity 1, either x - 1 or x + 1 is also a part.
1, 0, 1, 2, 3, 4, 6, 7, 10, 14, 17, 23, 32, 39, 51, 67, 83, 105, 134, 165, 206, 256, 312, 385, 475, 573, 697, 849, 1021, 1231, 1483, 1771, 2121, 2534, 3007, 3575, 4245, 5008, 5914, 6979, 8198, 9626, 11292, 13201, 15430, 18010, 20960, 24389, 28346, 32855, 38066
Offset: 0
Keywords
Examples
The a(0) = 1 through a(8) = 10 partitions: () . (11) (21) (22) (32) (33) (43) (44) (111) (211) (221) (222) (322) (332) (1111) (2111) (321) (2221) (2222) (11111) (2211) (3211) (3221) (21111) (22111) (3311) (111111) (211111) (22211) (1111111) (32111) (221111) (2111111) (11111111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Function[ptn,!Or@@Table[Count[ptn,x]==1&&!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]]],{n,0,30}]
Comments