This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355394 #24 Feb 17 2024 14:08:02 %S A355394 1,0,0,1,1,3,3,6,6,10,11,16,18,25,30,38,47,59,74,90,112,136,171,203, %T A355394 253,299,372,438,536,631,767,900,1085,1271,1521,1774,2112,2463,2910, %U A355394 3389,3977,4627,5408,6276,7304,8459,9808,11338,13099,15112,17404,20044,23018,26450,30299,34746,39711,45452,51832 %N A355394 Number of integer partitions of n such that, for all parts x, x - 1 or x + 1 is also a part. %C A355394 These are partitions without a neighborless part, where a part x is neighborless if neither x - 1 nor x + 1 are parts. The first counted partition that does not cover an interval is (5,4,2,1). %H A355394 Lucas A. Brown, <a href="/A355394/b355394.txt">Table of n, a(n) for n = 0..100</a> %H A355394 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A355394.py">A355394.py</a> %F A355394 a(n) = A000041(n) - A356236(n). %e A355394 The a(0) = 1 through a(9) = 11 partitions: %e A355394 () . . (21) (211) (32) (321) (43) (332) (54) %e A355394 (221) (2211) (322) (3221) (432) %e A355394 (2111) (21111) (2221) (22211) (3222) %e A355394 (3211) (32111) (3321) %e A355394 (22111) (221111) (22221) %e A355394 (211111) (2111111) (32211) %e A355394 (222111) %e A355394 (321111) %e A355394 (2211111) %e A355394 (21111111) %t A355394 Table[Length[Select[IntegerPartitions[n],Function[ptn,!Or@@Table[!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]]],{n,0,30}] %Y A355394 The singleton case is A355393, complement A356235. %Y A355394 The complement is counted by A356236, ranked by A356734. %Y A355394 The strict case is A356606, complement A356607. %Y A355394 These partitions are ranked by A356736. %Y A355394 A000041 counts integer partitions, strict A000009. %Y A355394 A000837 counts relatively prime partitions, ranked by A289509. %Y A355394 A007690 counts partitions with no singletons, complement A183558. %Y A355394 Cf. A066312, A073491, A077855, A328171, A328172, A328187, A328221, A356233, A356237. %K A355394 nonn %O A355394 0,6 %A A355394 _Gus Wiseman_, Aug 26 2022 %E A355394 a(31)-a(59) from _Lucas A. Brown_, Sep 04 2022