This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355395 #78 Aug 24 2023 07:48:58 %S A355395 1,1,2,1,2,2,1,2,4,2,1,2,6,8,2,1,2,8,26,16,2,1,2,10,56,162,32,2,1,2, %T A355395 12,98,704,1442,64,2,1,2,14,152,2050,15392,18306,128,2,1,2,16,218, %U A355395 4752,84482,593408,330626,256,2,1,2,18,296,9506,318752,7221250,39691136,8488962,512,2 %N A355395 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(j*(n-j)) * binomial(n,j). %C A355395 The Stanley reference below describes a family of binomial posets whose elements are two colored graphs with vertices labeled on [n] and with edges labeled on [k-1]. T(n,k) is the number of elements in an n-interval of such a binomial poset. - _Geoffrey Critzer_, Aug 21 2023 %D A355395 R. P. Stanley, Enumerative Combinatorics, Volume 1, Second Edition, Example 3.18.3(e), page 323. %F A355395 E.g.f. of column k: Sum_{j>=0} exp(k^j * x) * x^j/j!. %F A355395 G.f. of column k: Sum_{j>=0} x^j/(1 - k^j * x)^(j+1). %F A355395 For k>=1, E(x)^2 = Sum_{n>=0} T(n,k)*x^n/B_k(n) where B_k(n) = n!*k^binomial(n,2) and E(x) = Sum_{n>=0} x^n/b_k(n). - _Geoffrey Critzer_, Aug 21 2023 %e A355395 Square array begins: %e A355395 1, 1, 1, 1, 1, 1, ... %e A355395 2, 2, 2, 2, 2, 2, ... %e A355395 2, 4, 6, 8, 10, 12, ... %e A355395 2, 8, 26, 56, 98, 152, ... %e A355395 2, 16, 162, 704, 2050, 4752, ... %e A355395 2, 32, 1442, 15392, 84482, 318752, ... %o A355395 (PARI) T(n, k) = sum(j=0, n, k^(j*(n-j))*binomial(n, j)); %Y A355395 Columns k=0..4 give A040000, A000079, A047863, A135079, A355440. %Y A355395 Main diagonal gives A320287. %Y A355395 Cf. A009999. %K A355395 nonn,tabl %O A355395 0,3 %A A355395 _Seiichi Manyama_, Jul 02 2022