This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355401 #16 Jul 07 2022 02:01:54 %S A355401 1,0,1,0,1,1,0,4,3,1,0,64,28,7,1,0,4096,960,140,15,1,0,1048576,126976, %T A355401 9920,620,31,1,0,1073741824,66060288,2666496,89280,2604,63,1,0, %U A355401 4398046511104,136365211648,2796552192,48377856,755904,10668,127,1 %N A355401 Triangle read by rows: T(n, k) = Sum_{i=1..n-k} inverse-q-binomial(n-k-1, i-1) * q-binomial(n-2+i, n-2) for 0 < k < n with initial values T(n, 0) = 0 for n > 0 and T(n, n) = 1 for n >= 0, here q = 2. %C A355401 The Gaussian or q-binomial coefficients [n, k]_q for 0 <= k <= n are the basis for lower triangular matrices T_q, which are created by an unusual formula. This triangle is the result for q = 2. The general construction is as follows: %C A355401 For some fixed integer q define the infinite lower triangular matrix M_q by M(q; n, 0) = 0 for n > 0, and M(q; n, n) = 1 for n >= 0, and M(q; n, k) = M(q; n-1, k-1) + q^(k-1) * M(q; n-1, k) for 0 < k < n. Then the matrix inverse I_q = M_q^(-1) exists, and M(q; n, k) = [n-1, k-1]_q for 0 < k <= n. Next define the triangle T_q by T(q; n, k) = Sum_{i=0..n-k} I(q; n-k, i) * M(q; n-1+i, n-1) for 0 < k <= n and T(q; n, 0) = 0^n for n >= 0. For q = 1 see A097805 and for q = 2 see this triangle. %C A355401 Conjecture: T(q; n+1, 1) = q^(n*n-n) for n >= 0. %C A355401 Conjecture: T(q; n, k) = q^((n-k-1)*(n-k)) * M(q; n, k) for 0 <= k <= n. %C A355401 Conjecture: Define g(q; n) = -Sum_{i=0..n-1} [n, i]_q * g(q; i) * T(q; n+1-i, 1) for n > 0 with g(q; 0) = 1. Then the matrix inverse R_q = T_q^(-1) is given by R(q; n, k) = g(q; n-k) * M(q; n, k) for 0 <= k <= n, and g(q; n) = R(q; n+1, 1) for n >= 0. %F A355401 Conjecture: T(n+1, 1) = A053763(n) = 2^(n*n - n) for n >= 0. %F A355401 Conjecture: T(n, k) = 2^((n-k-1) * (n-k)) * A022166(n-1, k-1) for 0 < k <= n, and T(n, 0) = 0^n for n >= 0. %F A355401 Conjecture: Define g(n) = -Sum_{i=0..n-1} A022166(n, i) * g(i) * T(n+1-i, 1) for n > 0 with g(0) = 1. Then matrix inverse R = T^(-1) is given by R(n, 0) = 0^n for n >= 0, and R(n, k) = g(n-k) * A022166(n-1, k-1) for 0 < k <= n, and g(n) = R(n+1, 1) for n >= 0. %e A355401 Triangle T(n, k) for 0 <= k <= n starts: %e A355401 n\k : 0 1 2 3 4 5 6 7 8 %e A355401 ================================================================================== %e A355401 0 : 1 %e A355401 1 : 0 1 %e A355401 2 : 0 1 1 %e A355401 3 : 0 4 3 1 %e A355401 4 : 0 64 28 7 1 %e A355401 5 : 0 4096 960 140 15 1 %e A355401 6 : 0 1048576 126976 9920 620 31 1 %e A355401 7 : 0 1073741824 66060288 2666496 89280 2604 63 1 %e A355401 8 : 0 4398046511104 136365211648 2796552192 48377856 755904 10668 127 1 %e A355401 etc. %e A355401 Matrix inverse R(n, k) for 0 <= k <= n starts: %e A355401 n\k : 0 1 2 3 4 5 6 7 %e A355401 =============================================================== %e A355401 0 : 1 %e A355401 1 : 0 1 %e A355401 2 : 0 -1 1 %e A355401 3 : 0 -1 -3 1 %e A355401 4 : 0 -29 -7 -7 1 %e A355401 5 : 0 -2561 -435 -35 -15 1 %e A355401 6 : 0 -814309 -79391 -4495 -155 -31 1 %e A355401 7 : 0 -944455609 -51301467 -1667211 -40455 -651 -63 1 %e A355401 etc. %Y A355401 Cf. A022166, A053763 (column 1), A135950. %K A355401 nonn,easy,tabl %O A355401 0,8 %A A355401 _Werner Schulte_, Jun 30 2022