cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355429 Square array T(n, k), n >= 0, k > 0, read by antidiagonals, where T(0, k) = A001906(k) for k > 0 and where T(n, k) = n - A130312(n) + A000045(2k + A072649(n)) for n > 0, k > 0.

This page as a plain text file.
%I A355429 #44 Apr 21 2024 22:11:44
%S A355429 1,2,3,4,5,8,6,9,13,21,7,14,22,34,55,10,15,35,56,89,144,11,23,36,90,
%T A355429 145,233,377,12,24,57,91,234,378,610,987,16,25,58,146,235,611,988,
%U A355429 1597,2584,17,37,59,147,379,612,1598,2585,4181,6765,18,38,92,148,380,989
%N A355429 Square array T(n, k), n >= 0, k > 0, read by antidiagonals, where T(0, k) = A001906(k) for k > 0 and where T(n, k) = n - A130312(n) + A000045(2k + A072649(n)) for n > 0, k > 0.
%C A355429 Each positive integer occurs exactly once, so this sequence is a permutation of the natural numbers.
%H A355429 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A355429 T(0, k) = A001906(k) for k > 0.
%F A355429 T(n, k) = n - A130312(n) + A000045(2k + A072649(n)) for n > 0, k > 0.
%e A355429 Square array begins:
%e A355429    1,  3,  8,  21,  55,  144,  377,   987, ...
%e A355429    2,  5, 13,  34,  89,  233,  610,  1597, ...
%e A355429    4,  9, 22,  56, 145,  378,  988,  2585, ...
%e A355429    6, 14, 35,  90, 234,  611, 1598,  4182, ...
%e A355429    7, 15, 36,  91, 235,  612, 1599,  4183, ...
%e A355429   10, 23, 57, 146, 379,  989, 2586,  6767, ...
%e A355429   11, 24, 58, 147, 380,  990, 2587,  6768, ...
%e A355429   12, 25, 59, 148, 381,  991, 2588,  6769, ...
%e A355429   16, 37, 92, 236, 613, 1600, 4184, 10949, ...
%o A355429 (PARI) b1(n)=local(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2) \\ A072649
%o A355429 T(n, k)=if(n==0, fibonacci(2*k), n - fibonacci(b1(n)) + fibonacci(2*k + b1(n)))
%Y A355429 Cf. A000045, A001906, A072649, A130312.
%K A355429 nonn,tabl
%O A355429 1,2
%A A355429 _Mikhail Kurkov_, Jul 20 2022 [verification needed]