This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355456 #10 Jul 18 2022 16:39:12 %S A355456 1,3,1,1,1,1,1,3,1,3,1,1,1,3,1,1,1,1,1,3,1,3,1,5,1,3,5,1,1,1,1,3,1,3, %T A355456 1,1,1,3,1,9,1,1,1,3,1,3,1,1,1,3,1,1,1,5,1,3,5,3,1,7,1,3,1,1,7,1,1,3, %U A355456 1,3,1,5,1,3,1,1,1,1,1,3,1,3,1,1,1,3,5,9,1,1,1,3,1,3,1,1,1,3,1,7,1,1,1,3,1 %N A355456 Greatest common divisor of sigma(n), A003961(n), and A276086(n). %H A355456 Antti Karttunen, <a href="/A355456/b355456.txt">Table of n, a(n) for n = 1..65537</a> %H A355456 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A355456 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %H A355456 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A355456 a(n) = gcd(A000203(n), A355442(n)). %F A355456 a(n) = gcd(A324644(n), A342671(n)) = gcd(A276086(n), A342671(n)) = gcd(A003961(n), A324644(n)). %o A355456 (PARI) %o A355456 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A355456 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; %o A355456 A355442(n) = gcd(A003961(n), A276086(n)); %o A355456 A355456(n) = gcd(sigma(n), A355442(n)); %Y A355456 Cf. A000203, A003961, A276086, A324644, A342671, A355442, A355002 (terms k such that a(k) shares a prime factor with k). %Y A355456 Cf. also A323653, A351459. %K A355456 nonn %O A355456 1,2 %A A355456 _Antti Karttunen_, Jul 13 2022