This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355458 #33 Aug 30 2022 14:27:03 %S A355458 1,7,111,3367,7787,8517,9071,54079,54451,138657,262157,759461,857817, %T A355458 4662317,21754021,25400729,41171387,50304331,368119693,799245603, %U A355458 938577991 %N A355458 Numbers k that set a new record m where m is the largest left-truncatable prime up to the final k (stop on reaching the final k). %C A355458 If instead of comparing the values of m, we compare the number of digits concatenated to k, then there are only 3 known terms: 1, 7 and 50304331 with 19, 23 and 24 digits respectively. %e A355458 a(1) = 1 because 1 sets a record m = 89726156799336363541 and 89726156799336363541, 9726156799336363541, 726156799336363541, 26156799336363541, 6156799336363541, 156799336363541, 56799336363541, 6799336363541, 799336363541, 99336363541, 9336363541, 336363541, 36363541, 6363541, 363541, 63541, 3541, 541, 41 are all primes (the truncation stops when the final k is reached). %e A355458 a(2) = 7 because for k = 2..6 no m exceeds 89726156799336363541, but for k = 7, m = 357686312646216567629137. %o A355458 (Python) %o A355458 from sympy import isprime %o A355458 def findNewCandidates(candidates): %o A355458 newCandidates = [] %o A355458 for candidate in candidates: %o A355458 for k in range(1,10): %o A355458 p = int(str(k) + str(candidate)) %o A355458 if (isprime(p)): %o A355458 newCandidates.append(p) %o A355458 return newCandidates %o A355458 record = 0 %o A355458 for k in range(1, 10**6): %o A355458 if (k % 2 == 0 or k % 5 == 0): %o A355458 continue %o A355458 toCheck = [k] %o A355458 while len(toCheck) > 0: %o A355458 lastToCheck = toCheck %o A355458 toCheck = findNewCandidates(toCheck) %o A355458 result = lastToCheck[-1] %o A355458 if (result > record): %o A355458 record = result %o A355458 print(str(k)) %Y A355458 Cf. A024785. %K A355458 nonn,base,more %O A355458 1,2 %A A355458 _Eder Vanzei_, Jul 02 2022 %E A355458 a(15)-a(18) from _Michael S. Branicky_, Jul 02 2022 %E A355458 a(19)-a(21) from _Michael S. Branicky_, Jul 04 2022