This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355463 #20 Feb 16 2023 11:32:03 %S A355463 1,1,2,10,131,5656,869097,490286392,1264458639313,12443651667592768, %T A355463 681538604797281047489,153070077563816488157872384, %U A355463 205935348854901274982393017521537,1352544986573612111579941739713633174912 %N A355463 Expansion of Sum_{k>=0} (x/(1 - k^k * x))^k. %H A355463 Seiichi Manyama, <a href="/A355463/b355463.txt">Table of n, a(n) for n = 0..52</a> %F A355463 a(n) = Sum_{k=1..n} k^(k*(n-k)) * binomial(n-1,k-1) for n > 0. %t A355463 Flatten[{1, Table[Sum[Binomial[n-1,k-1] * k^(k*(n-k)), {k,1,n}], {n,1,20}]}] (* _Vaclav Kotesovec_, Feb 16 2023 *) %o A355463 (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (x/(1-k^k*x))^k)) %o A355463 (PARI) a(n) = if(n==0, 1, sum(k=1, n, k^(k*(n-k))*binomial(n-1, k-1))); %Y A355463 Cf. A193198, A193199, A349893, A355464. %Y A355463 Cf. A080108, A355471, A355472. %K A355463 nonn %O A355463 0,3 %A A355463 _Seiichi Manyama_, Jul 03 2022