This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355467 #22 May 05 2023 07:57:18 %S A355467 2,4,4,8,6,8,8,16,12,12,12,16,14,16,16,32,18,24,20,24,24,24,24,32,27, %T A355467 27,32,32,30,32,32,64,36,36,36,48,38,40,40,48,42,48,44,48,48,48,48,64, %U A355467 50,54,52,54,54,64,56,64,60,60,60,64,62,63,64,128,66,72,68,72,70,72,72,96,74,75,80,80,78,80,80,96,96 %N A355467 a(n) is the smallest number which is greater than n and has more prime factors (with multiplicity) than n. %C A355467 Distinct from 2^A073093 because of the proviso that a(n) > n and bigomega(a(n)) > bigomega(n). %F A355467 a(2^n) = 2^(n+1) because the smallest extra factor is 2. %F A355467 a(3*2^n) = 2^(n+2) because 4 (i.e., 2^2) is the next biggest pair of factors. %e A355467 For n = 1, a(1) = 2, since 2 is the first number satisfying 2 > 1 and bigomega(2) = 1 > bigomega(1) = 0. %e A355467 For n = 5, a(5) = 8, since 8 is the first number satisfying 8 > 5 and bigomega(8) = 3 > bigomega(5) = 1. %e A355467 For n = 12, a(12) = 16, since 16 is the first number satisfying 16 > 12 and bigomega(16) = 4 > bigomega(12) = 3. %p A355467 A355467 := proc(n) %p A355467 local a,nOmega ; %p A355467 nOmega := A001222(n) ; %p A355467 for a from n+1 do %p A355467 if A001222(a) > nOmega then %p A355467 return a; %p A355467 end if; %p A355467 end do; %p A355467 end proc: %p A355467 seq(A355467(n),n=1..80) ; # _R. J. Mathar_, May 05 2023 %o A355467 (Haskell) %o A355467 import Data.Numbers.Primes %o A355467 result :: [Integer] %o A355467 result = fmap ( %o A355467 \n -> head ( %o A355467 dropWhile ( %o A355467 \m -> length (primeFactors m :: [Integer]) <= length (primeFactors n :: [Integer]) %o A355467 ) %o A355467 [n..] %o A355467 ) %o A355467 ) [1..] %o A355467 (PARI) a(n) = my(k=n+1, nb=bigomega(n)); while (bigomega(k) <= nb, k++); k; \\ _Michel Marcus_, Jul 05 2022 %Y A355467 Cf. A073093, A001222. %K A355467 nonn %O A355467 1,1 %A A355467 _Dan Dart_, Jul 03 2022