cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355470 Expansion of Sum_{k>=0} (k^3 * x)^k/(1 - k^3 * x)^(k+1).

This page as a plain text file.
%I A355470 #12 Jul 03 2022 09:34:47
%S A355470 1,1,66,21222,18927560,36030104000,125486684755152,722272396672485568,
%T A355470 6391048590559497227904,82362961035803105954736768,
%U A355470 1482370265813455598541301007360,36031982428595760278113744699088384,1150873035676373345725887922070318410752
%N A355470 Expansion of Sum_{k>=0} (k^3 * x)^k/(1 - k^3 * x)^(k+1).
%F A355470 E.g.f.: Sum_{k>=0} exp(k^3 * x) * (k^3 * x)^k/k!.
%F A355470 a(n) = Sum_{k=0..n} k^(3*n) * binomial(n,k).
%o A355470 (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k^3*x)^k/(1-k^3*x)^(k+1)))
%o A355470 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1+sum(k=1, N, exp(k^3*x)*(k^3*x)^k/k!)))
%o A355470 (PARI) a(n) = sum(k=0, n, k^(3*n)*binomial(n, k));
%Y A355470 Cf. A355469, A355473.
%Y A355470 Cf. A072034, A242446, A355466.
%K A355470 nonn
%O A355470 0,3
%A A355470 _Seiichi Manyama_, Jul 03 2022