This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355474 #25 Sep 24 2022 15:46:24 %S A355474 1,2,1,3,2,1,4,4,2,1,5,5,4,2,1,6,7,6,4,2,1,7,8,9,6,4,2,1,8,10,10,10,6, %T A355474 4,2,1,9,11,13,11,10,6,4,2,1,10,13,15,15,12,10,6,4,2,1,11,14,17,17,17, %U A355474 12,10,6,4,2,1,12,16,19,20,20,18,12,10,6,4,2,1 %N A355474 Square array T(m,n) = Card({ (i, j) : 1 <= i <= m, 1 <= j <= min(n, i), GCD(i, j) = 1 }), read by antidiagonals upwards. %C A355474 Also the number of regions in the 0 < x < y sector of the plane that are delimited by the lines with equations i*x + j*y = 0, where i and j are integers, not both 0, and |i| <= m, |j| <= n. This remark is motivated by Factorization Patterns (FPs) and Factorization Patterns of Sequences of Divisors (FPSD) concerns, as defined in A191743 and A290110. This is the case k=2 of a more general problem where k is omega(z)=A001221(z), the number of distinct primes dividing z, for which we would define T(n1,n2,...,nk) instead of T(m,n). The idea is the following: two numbers (e.g., 12 and 20) can have the same FP (p^2*q) without having the same FPSD ([1 < p < q < p^2 < p*q < p^2*q] != [1 < p < p^2 < q < p*q < p^2*q]). T(m,n) tells how many distinct FPSDs share the same FP of the p^m*q^n form. See the illustration for (m,n) = (2,1), section Links. %H A355474 Luc Rousseau, <a href="/A355474/a355474.png">Illustration of T(2,1)=2 and its relationship with the p^2*q factorization pattern</a>. %F A355474 T(n,n) = A002088(n). %e A355474 Let m=2 and n=1. There are exactly two lattice points (i, j) that satisfy 1 <= i <= 2 and 1 <= j <= min(1, i) and GCD(i, j) = 1, namely (1, 1) and (2, 1). So T(2,1) = 2. %e A355474 Array begins: %e A355474 m\n| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 %e A355474 ---+---------------------------------------------------- %e A355474 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 %e A355474 2 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 %e A355474 3 | 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 %e A355474 4 | 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 %e A355474 5 | 5 7 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 %e A355474 6 | 6 8 10 11 12 12 12 12 12 12 12 12 12 12 12 12 12 %e A355474 7 | 7 10 13 15 17 18 18 18 18 18 18 18 18 18 18 18 18 %e A355474 8 | 8 11 15 17 20 21 22 22 22 22 22 22 22 22 22 22 22 %e A355474 9 | 9 13 17 20 24 25 27 28 28 28 28 28 28 28 28 28 28 %e A355474 10 | 10 14 19 22 26 27 30 31 32 32 32 32 32 32 32 32 32 %e A355474 11 | 11 16 22 26 31 33 37 39 41 42 42 42 42 42 42 42 42 %e A355474 12 | 12 17 23 27 33 35 40 42 44 45 46 46 46 46 46 46 46 %e A355474 13 | 13 19 26 31 38 41 47 50 53 55 57 58 58 58 58 58 58 %e A355474 14 | 14 20 28 33 41 44 50 53 57 59 62 63 64 64 64 64 64 %e A355474 15 | 15 22 30 36 44 47 54 58 62 64 68 69 71 72 72 72 72 %e A355474 16 | 16 23 32 38 47 50 58 62 67 69 74 75 78 79 80 80 80 %e A355474 17 | 17 25 35 42 52 56 65 70 76 79 85 87 91 93 95 96 96 %o A355474 (PARI) %o A355474 T(m, n) = sum(i=1, m, sum(j=1, min(n, i), gcd(i, j)==1)) %o A355474 for(d=2,10,for(n=1,d-1,my(m=d-n);print1(T(m,n),", "))) %Y A355474 Cf. A191743, A290110, A002088, A001221. %K A355474 nonn,tabl %O A355474 1,2 %A A355474 _Luc Rousseau_, Jul 03 2022