This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355477 #55 Sep 17 2023 01:29:18 %S A355477 0,0,1,3,4,8,9,14,16,23,25,33,36,46,49,60,64,77,81,96,100 %N A355477 Maximum number of skew-tetrominoes that can be packed into an n X n square. %C A355477 Skew-tetrominoes are tiles of the form: %C A355477 ___ %C A355477 |_ |_ %C A355477 |___| %C A355477 together with all rotations/reflections of this shape. %C A355477 It is not hard to see that skew-tetrominoes cannot completely tile an n X n square, so a(n) < n^2/4. %C A355477 The odd terms are easily understood: a(2m+1) = m^2. %C A355477 A straightforward (greedy) construction shows that m^2 skew-tetrominoes (all with the same orientation) can be packed into a (2m+1) X (2m) rectangle. Therefore a(2m+1) >= m^2. %C A355477 On the other hand, we also have a(2m+1) <= m^2: Consider all cells with indices of the form (2i, 2j); there are m^2 such cells in a (2m+1) X (2m+1) square. Moreover, any valid placement of a skew-tetromino must cover one of these cells, so a(2m+1) <= m^2. %C A355477 The behavior of a(2m) appears more subtle; the initial terms satisfy a(2m) = m^2 - floor(m/2), but this formula breaks down at a(20) = 96 (not 95). %C A355477 Additional terms: %C A355477 (Lower bounds are from explicit constructions; upper bounds are from mixed-integer-programming search.) %C A355477 a(22) in {116, 117}. %C A355477 a(23) = 121. %C A355477 a(24) = 139. %C A355477 a(25) = 144. %C A355477 a(26) in {163, 164}. %C A355477 a(27) = 169. %C A355477 a(28) in {190, 191}. %C A355477 a(29) = 196. %C A355477 a(30) in {218, 219, 220}. %C A355477 a(31) = 225. %C A355477 a(32) in {248, 249, 250, 251}. %C A355477 a(33) = 256. %C A355477 a(34) in {280, 281, 282, 283}. %C A355477 a(35) = 289. %C A355477 a(36) in {316, 317, 318}. %C A355477 a(37) = 324. %C A355477 a(38) in {352, 353, 354, 355}. %C A355477 a(39) = 361. %C A355477 a(40) in {388, 389, 390, 391, 392, 393, 394}. %C A355477 a(41) = 400. %C A355477 a(42) in {432, 433, 434}. %H A355477 Alexander D. Healy, <a href="/A355477/a355477.pdf">Examples of (near-)optimal packings for n <= 42</a> %H A355477 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetromino">Tetromino</a> %F A355477 a(n) < n^2/4. %F A355477 a(2m+1) = m^2. %e A355477 a(8) = 14 by the following packing of 14 skew-tetrominoes into an 8 X 8 square: %e A355477 _______________ %e A355477 |_|1 _| |___| |_| %e A355477 |___| 2_|3 _|_4 | %e A355477 |_ 5|_|___| | |_| %e A355477 | |___| | 6_|_7 | %e A355477 |_8 | 9_|_|_10|_| %e A355477 | |_|_|11_| |___| %e A355477 |_12|___|13_|14_| %e A355477 |_|_|___|_|___|_| %Y A355477 Cf. A256535. %K A355477 nonn,more %O A355477 1,4 %A A355477 _Alexander D. Healy_, Jul 03 2022