This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355478 #35 Jan 05 2023 10:19:18 %S A355478 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1, %T A355478 1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5,5,5,5,5,6,6,6, %U A355478 6,6,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9 %N A355478 The honeybee prime walk: a(n) is the number of closed honeycomb cells after the n-th step of the walk described in the comments. %C A355478 At step 0, the honeybee is at the origin. No honeycomb cell wall is yet built. %C A355478 At step 1, the honeybee walks one unit eastward, building the first cell wall. %C A355478 At step n, the honeybee turns 60 degrees clockwise or counterclockwise (depending on whether n is prime or not, respectively), then walks one unit in the new direction, building the next cell wall (which may coincide with an existing wall). %C A355478 a(n) is the number of distinct, "unit" honeycomb cells (six sides of unit length) built after the n-th step. %C A355478 Does this walk generate a full hexagonal tiling of the plane? %H A355478 Paolo Xausa, <a href="/A355478/b355478.txt">Table of n, a(n) for n = 0..9999</a> %H A355478 Paolo Xausa, <a href="/A355478/a355478_2.gif">Animation of terms n = 0..40</a> %H A355478 Paolo Xausa, <a href="/A355478/a355478_3.gif">Animation of terms n = 0..749</a> %H A355478 Paolo Xausa, <a href="/A355478/a355478_1.pdf">Illustration of selected terms up to n = 11000</a> %H A355478 <a href="/index/Wa#WALKS">Index entries for sequences related to walks</a> %e A355478 In the following diagrams the walk is shown at the end of the n-th step, together with the position of the bee (*). %e A355478 . %e A355478 n 0 1 8 28 60 %e A355478 a(n) 0 0 0 1 5 %e A355478 __ %e A355478 __/ 5\*_ %e A355478 * __* __ __ / 4\__/ \__ %e A355478 \ \__ \__/ 3\__ \__ %e A355478 / / \__ \__/ 2\__/ \__ %e A355478 \ \*_ \__ \__/ \__ \__ %e A355478 / / 1\ \ / 1\ \ %e A355478 \ \__/ __/ \__/ __/ %e A355478 / / __/ / __/ %e A355478 \* \__/ \__/ %e A355478 . %t A355478 A355478[nmax_]:=Module[{a={0}, walk={{0, 0}}, angle=0, cells}, Do[AppendTo[walk, AngleVector[Last[walk], angle+=If[PrimeQ[n], -1, 1]Pi/3]]; cells=FindCycle[Graph[MapApply[UndirectedEdge, Partition[walk, 2, 1]]], {6}, All]; AppendTo[a, CountDistinct[Map[Sort, Map[First, cells, {2}]]]], {n, nmax}]; a]; %t A355478 A355478[100] (* _Paolo Xausa_, Jan 04 2023 *) %Y A355478 Cf. A174313, A211020, A233399, A355479, A355480, A359529. %K A355478 nonn,walk %O A355478 0,37 %A A355478 _Paolo Xausa_, Jul 18 2022