A355480 a(n) is the number of distinct, hexagonal-tiled regions after the n-th step of the walk described in A355478.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 0
Examples
In the following diagrams the walk is shown at the end of the n-th step, together with the position of the bee (*). . n 0 1 8 28 60 a(n) 0 0 0 1 2 __ __/ 2\*_ * __* __ __ / 2\__/ \__ \ \__ \__/ 2\__ \__ / / \__ \__/ 2\__/ \__ \ \*_ \__ \__/ \__ \__ / / 1\ \ / 1\ \ \ \__/ __/ \__/ __/ / / __/ / __/ \* \__/ \__/ .
Links
Programs
-
Mathematica
A355480[nterms_]:=Module[{a={0},walk={{0,0}},angle=0,cells},Do[AppendTo[walk,AngleVector[Last[walk],angle+=If[PrimeQ[n],-1,1]Pi/3]];cells=FindCycle[Graph[MapApply[UndirectedEdge,Partition[walk,2,1]]],{6},All];AppendTo[a,Length[ConnectedComponents[Graph[Flatten[cells]]]]],{n,nterms-1}];Take[a,nterms]]; A355480[100]
Comments