cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355493 Expansion of Sum_{k>=0} (k^3 * x)^k/(1 - x)^(k+1).

This page as a plain text file.
%I A355493 #17 Feb 21 2023 18:25:40
%S A355493 1,2,67,19879,16856337,30601661681,101743314190033,559257425236996361,
%T A355493 4726837695171258085569,58192258417571877186113281,
%U A355493 1000581709943568968705788233921,23236157618902718144948494353385025,709080642850925779233576351761544968833
%N A355493 Expansion of Sum_{k>=0} (k^3 * x)^k/(1 - x)^(k+1).
%H A355493 Winston de Greef, <a href="/A355493/b355493.txt">Table of n, a(n) for n = 0..152</a>
%F A355493 E.g.f.: exp(x) * Sum_{k>=0} (k^3 * x)^k/k!.
%F A355493 a(n) = Sum_{k=0..n} k^(3*k) * binomial(n,k).
%o A355493 (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k^3*x)^k/(1-x)^(k+1)))
%o A355493 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, (k^3*x)^k/k!)))
%o A355493 (PARI) a(n) = sum(k=0, n, k^(3*k)*binomial(n, k));
%Y A355493 Cf. A086331, A323280.
%Y A355493 Cf. A355470, A355473, A355496.
%K A355493 nonn
%O A355493 0,2
%A A355493 _Seiichi Manyama_, Jul 04 2022