cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355496 Expansion of Sum_{k>=0} (k^3 * x/(1 - x))^k.

This page as a plain text file.
%I A355496 #12 Feb 21 2023 18:25:33
%S A355496 1,1,65,19812,16836458,30584805344,101712712528352,559155681922806328,
%T A355496 4726278437746021089208,58187531579876705928027712,
%U A355496 1000523517685151396828602120640,23235157037192774575979788565151104,709057406693306876515431403267191583808
%N A355496 Expansion of Sum_{k>=0} (k^3 * x/(1 - x))^k.
%H A355496 Winston de Greef, <a href="/A355496/b355496.txt">Table of n, a(n) for n = 0..152</a>
%F A355496 a(n) = Sum_{k=1..n} k^(3*k) * binomial(n-1,k-1) for n > 0.
%o A355496 (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k^3*x/(1-x))^k))
%o A355496 (PARI) a(n) = if(n==0, 1, sum(k=1, n, k^(3*k)*binomial(n-1, k-1)));
%Y A355496 Cf. A355494, A355495.
%Y A355496 Cf. A355472, A355493.
%K A355496 nonn
%O A355496 0,3
%A A355496 _Seiichi Manyama_, Jul 04 2022