cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355499 Decimal expansion of Product_{k>=1} (k - 2/3)^(1/(k - 2/3)) / k^(1/k).

Original entry on oeis.org

0, 4, 1, 3, 0, 6, 2, 4, 1, 2, 5, 5, 9, 3, 3, 6, 3, 9, 5, 2, 8, 3, 8, 2, 5, 2, 1, 0, 0, 0, 6, 7, 2, 8, 1, 0, 8, 3, 1, 7, 7, 4, 1, 2, 9, 6, 7, 4, 4, 8, 6, 8, 8, 5, 5, 7, 7, 9, 5, 4, 4, 4, 0, 5, 4, 6, 3, 3, 1, 9, 0, 9, 5, 4, 6, 4, 5, 4, 5, 6, 0, 0, 2, 3, 1, 7, 2, 6, 3, 7, 3, 9, 6, 5, 6, 1, 7, 0, 1, 9, 9, 7, 0, 0, 7, 2
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 04 2022

Keywords

Examples

			0.0413062412559336395283825210006728108317741296744868855779544405463319...
		

Crossrefs

Programs

  • Maple
    evalf((3^(1/4) * exp(-gamma/2) * GAMMA(1/3)^3 / (4*Pi^2))^(Pi/sqrt(3)) / 3^(3*(log(3) + 2*gamma)/4), 120);
  • Mathematica
    Join[{0},RealDigits[(3^(1/4) * Exp[-EulerGamma/2] * Gamma[1/3]^3/4/Pi^2)^ (Pi/Sqrt[3])/3^(3*(Log[3] + 2*EulerGamma)/4), 10, 120][[1]]]
  • PARI
    default(realprecision, 200); exp(sumpos(n=1, log(n - 2/3)/(n - 2/3) - log(n)/n))

Formula

Equals (3^(1/4) * exp(-gamma/2) * Gamma(1/3)^3 / (4*Pi^2))^(Pi/sqrt(3)) / 3^(3*(log(3) + 2*gamma)/4), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.