This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355509 #35 Jul 16 2022 07:12:45 %S A355509 0,2,3,6,10,14,18,24,32,40,50,60,72,84,98,112,128,144,162,180,200,220, %T A355509 242,264,288,312,338,364,392,420,450,480,512,544,578,612,648,684,722, %U A355509 760,800,840,882,924,968,1012,1058,1104,1152,1200,1250,1300,1352,1404 %N A355509 Peaceable coexisting armies of knights: a(n) is the maximum number m such that m white knights and m black knights can coexist on an n X n chessboard without attacking each other. %C A355509 After the first 7 terms, the first differences are terms of A052928: for n >= 8, a(n) - a(n-1) = A052928(n-1). %C A355509 The increase in differences going from an even n to an odd n, but not from an odd n to an even n, is due to the differing optimal layouts for odd vs. even n values. See example section for a(7) and a(8). %H A355509 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1). %F A355509 For n > 6, a(n) = floor(((n-1)^2)/2). %F A355509 G.f.: x^2*(2 - x + 2*x^3 - 2*x^4 - x^5 + 2*x^6 + 2*x^7 - 2*x^8)/((1 - x)^3*(1 + x)). - _Stefano Spezia_, Jul 05 2022 %e A355509 Examples for n=2 to n=6 have been included as they do not follow the general formula. %e A355509 . %e A355509 A solution illustrating a(2)=2: %e A355509 +-----+ %e A355509 | B B | %e A355509 | W W | %e A355509 +-----+ %e A355509 . %e A355509 A solution illustrating a(3)=3: %e A355509 +-------+ %e A355509 | . . . | %e A355509 | B B W | %e A355509 | W W B | %e A355509 +-------+ %e A355509 . %e A355509 A solution illustrating a(4)=6: %e A355509 +---------+ %e A355509 | B B . W | %e A355509 | W W . B | %e A355509 | B B . W | %e A355509 | W W . B | %e A355509 +---------+ %e A355509 . %e A355509 A solution illustrating a(5)=10: %e A355509 +-----------+ %e A355509 | W B W B W | %e A355509 | W B W B W | %e A355509 | . . . . . | %e A355509 | B W B W B | %e A355509 | B W B W B | %e A355509 +-----------+ %e A355509 . %e A355509 A solution illustrating a(6)=14: %e A355509 +-------------+ %e A355509 | B B W W B B | %e A355509 | W W B B W W | %e A355509 | B . . . . B | %e A355509 | W . . . . W | %e A355509 | B B W W B B | %e A355509 | W W B B W W | %e A355509 +-------------+ %e A355509 . %e A355509 Examples for n=7 and n=8 are provided, as while both follow the same formula, the layout for even values of n differs from the layout for odd values of n (related to the fact that, for even values of n, the floor function rounds down a non-integer value). %e A355509 . %e A355509 A solution illustrating a(7)=18: %e A355509 +---------------+ %e A355509 | B B B B B B B | %e A355509 | B B B B B B B | %e A355509 | B . B . B . B | %e A355509 | . . . . . . . | %e A355509 | W . W . W . W | %e A355509 | W W W W W W W | %e A355509 | W W W W W W W | %e A355509 +---------------+ %e A355509 . %e A355509 A solution illustrating a(8)=24: %e A355509 +-----------------+ %e A355509 | B B B B B B B B | %e A355509 | B B B B B B B B | %e A355509 | B B B B B B B B | %e A355509 | . . . . . . . . | %e A355509 | . . . . . . . . | %e A355509 | W W W W W W W W | %e A355509 | W W W W W W W W | %e A355509 | W W W W W W W W | %e A355509 +-----------------+ %Y A355509 Cf. A007590, A052928, A176222 (peaceable kings), A250000 (peaceable queens), A002620 (peaceable rooks). %K A355509 nonn,easy %O A355509 1,2 %A A355509 _Aaron Khan_, Jul 04 2022