This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355512 #16 Aug 02 2024 11:50:49 %S A355512 2,3,5,13,31,106,137,791,1719,40328,82375,205078,287453,492531, %T A355512 27376658,27869189,138853414,444429431,583282845,1027712276, %U A355512 15998966985,17026679261,169239080334,355504839929,1946763279979,13982847799782,15929611079761,29912458879543,135579446597933 %N A355512 Sum of numerator and denominator in the convergents of the approximation of log(2)/log(3) by a continued fraction. %o A355512 (PARI) a355512(upto) = {my(q=log(2)/log(3), fa=oo); for (denmax=1, upto, my(f=bestappr(q,denmax)); if (fa!=f, print1(numerator(f)+denominator(f),", "); fa=f))}; %o A355512 \\ needs increased precision for larger terms %o A355512 a355512(10^6) %o A355512 (PARI) \\ See also A005663 and A005664 for efficient code. %Y A355512 Cf. A005663, A005664, A102525, A355513, A355515. %Y A355512 Cf. A355514 for the relation to potential cycle lengths of the 3x+1 problem. %K A355512 nonn %O A355512 1,1 %A A355512 _Hugo Pfoertner_, Jul 05 2022